
SYS
INSTITUT FÜR LEISTUNGSELEKTRONISCHE SYSTEME

www.th-nuernberg.de/elsys

Developmentofan FPGA based
Value Acquisition System for
a Real-Time ControlPlatform

Thilo Wendt

Abstract

This report addresses the design and verification of an FPGA based solution for actual value
acquisition in the domain of power electronics. In this connection, the FPGA acts as a master
of a serial peripheral interface which is connected to the output of a 16 bit ADC. Besides the
acquisition of the raw value, a hardware solution for post processing is included as well. The
report presents a universal design methodology for FPGA projects as well as an analysis of the
environment and the target platform, the solution is designed for. Furthermore, the verification
with a static test bench has been performed in the project. The report contains an analysis of the
opportunities and drawbacks of static test bench approaches in comparison to object oriented
concepts. Finally, recommendations for further hardware developments within the project are
given based on the outcomes of the development of the actual value acquisition system. Target
audience are electrical engineers with a background in the design of digital hardware with
hardware description languages. A descent understanding of VHDL is recommended.

Thilo Wendt Institut ELSYS i

Nomenclature

Abbreviations

a.k.a. Also Known As

ADC Analog Digital Converter

AXI Advanced eXtensible Interface

DUT Design Under Test

e.g. exampli gratia

FPGA Field Programmable Gate Array

FSM Finite State Machine

FUNC Functional Requirement

HDL Hardware Description Language

i.e. id est

IO Input Output

IP Intellectual Property

LSB Least Significant Bit

MSB Most Significant Bit

NOF Non Functional Requirement

PCB Printed Circuit Board

RPU Real-Time Processing Unit

SAHT Sample And Hold Time

SoC System-on-a-Chip

SPI Serial Peripheral Interface

SysML System Modeling Language

VHDL Very High Speed Integrated Circuit HDL

Thilo Wendt Institut ELSYS ii

Contents

Abstract i

Nomenclature ii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure of the Report . 2
1.3 Project Goals . 2

2 Theory 3
2.1 Methodology . 3

2.1.1 Finite State Machines for Logic Design . 3
2.1.2 State Reduction of FSMs . 4
2.1.3 FSM Implementation in HDL . 7

2.2 Context Analysis . 11
2.2.1 Hardware System Context . 11
2.2.2 Software System Context . 14

2.3 Requirements . 15
2.3.1 Functional Requirements . 15
2.3.2 Non-Functional Requirements . 17

2.4 Architecture . 19

3 Results 21
3.1 Implementation . 21

3.1.1 SPI Master . 21
3.1.2 Conversion Unit . 28
3.1.3 ADC Controller . 30
3.1.4 Advanced eXtensible Interface 4 Lite . 32
3.1.5 Top Level Module . 34

3.2 Verification . 37
3.2.1 Verification by Simulation . 37
3.2.2 Verification on Hardware . 41

4 Summary and Discussion 45
4.1 Method Discussion . 45
4.2 Summary . 46

Thilo Wendt Institut ELSYS iii

Contents

4.3 Outlook . 46

Bibliography 52

Appendices 55

A Description of the IP core 55
A.1 AXI Registers . 55

A.1.1 ADC Control Register . 55
A.1.2 SPI Control Register . 57
A.1.3 SPI Configuration Register . 58
A.1.4 Master Channel Selection . 59
A.1.5 ADC Channel Selection . 60
A.1.6 Transmission Ended Register . 60
A.1.7 Addition and Multiplication Ended Register . 61
A.1.8 Conversion Ongoing Register . 61
A.1.9 Configuration Value Register . 62
A.1.10 ADC Available Indicator . 62

A.2 IO Signals . 63
A.3 Design Parameters . 64

B Environment 65
B.1 Measurement Setup . 65
B.2 Software Tools . 65

Thilo Wendt Institut ELSYS iv

1 Introduction

1.1 Motivation

A crucial step in every control application is the acquisition of actual values from the target
system. In the domain of power electronics, the application usually requires control cycles of a few
microseconds because of the short time constants of the target system. Therefore, the component
being responsible for the acquisition of actual values shall induce minimum latency. The goal
of the current project is the development of an IP core for an FPGA, that is capable to operate
a number of analog digital converters (ADC) simultaneously while maintaining a low resource
footprint. The target platform is a Xilinx Zynq UltraScale+ SoC FPGA which is embedded in a
system targeting the rapid prototyping of new control algorithms for power electronic devices.
Equipped with a highly performant computation unit, the system, which is available under the
label ”UltraZohm”, is capable to meet hard real time requirements even for highly dynamic target
devices with a large number of switching states at high switching frequencies [1]. The UltraZohm
hardware features a fast and precise ADC which shall be operated by the newly created IP core
presented in this report.
The implementation on an FPGA is motivated by the capability to parallelize process by using a
hardware implementation. In contrast to a processor, FPGA based implementation do not depend
on the instruction set of the processor it is rather a custom hardware solution for the problem
to be solved, which offers great parallelization opportunities. Furthermore, the SoC FPGA in the
UltraZohm offers comprehensive digital signal processing hardware that is used for further post
processing of the acquired information.
Besides the development of the hardware component, the design workflow for direct hardware
development shall be examined for eligibility for the UltraZohm project. As depicted in [1] the
usual workflow in the UltraZohm project is the code generation of hardware descriptions by using
High Level Synthesis by Xilinx or the Matlab HDL coder by MathWorks. While these workflows
are eligible for rapid prototyping, the solution may not be as optimized as a manually tailored
component. Since the acquisition of actual values with a fixed external hardware is no subject to
frequent major changes a more optimized solution is desirable. However, it must be examined, if
the workflow is suitable for further developments in the UltraZohm project.

Thilo Wendt Institut ELSYS 1

1 Introduction

1.2 Structure of the Report

The report is subdivided in the following parts: After a short introduction to the problem and
a justification of the presented development in the current chapter, theoretic fundamentals con-
cerning system and logic design are given in chapter 2. The chapter contains a methodology
description of the hardware design workflow applied in the project as well as a context and
requirements analysis for the IP core. Finally, an abstract architecture is given in the chapter. The
implementation as well as the verification of the components of the architecture is described in
chapter 3. Considerations for future developments and a discussion about the methods applied
in the project are given in the final chapter 4.

1.3 Project Goals

The goal of the current project is the development of a base component for actual value acquisition
on a Xilinx Zynq UltraScale+ SoC FPGA. It is a contribution to the UltraZohm project and
therefore, the existing hardware of the UltraZohm control system is being used. The solution
shall offer maximum flexibility concerning software control options and further developments.
Therefore, a strict hierarchic component design shall be applied in order to offer the possibility
of design reuse and to ensure maintainability. With this approach, the complexity is kept at a
minimum level. Furthermore, the solution shall maintain a low resource footprint while achieving
the highest physically possible sampling rates of the ADC.

Thilo Wendt Institut ELSYS 2

2 Theory

The following chapter contains an introduction to the methodologies and the system design on
which the implementation described in chapter 3 is based. Section 2.1 contains a brief introduction
to the logic design with finite state machines (FSM). Section 2.2 and 2.3 cover the system and
requirements analysis, on which the architecture of the IP core depicted in section 2.4 is based.

2.1 Methodology

The following section gives a brief introduction to logic design with FSMs. Firstly, a decision for
a suitable FSM design is given in section 2.1.1. Section 2.1.2 and 2.1.3 cover the implementation
of the FSM in a hardware description language (HDL).

2.1.1 Finite State Machines for Logic Design

It is common practice to describe digital circuits using FSM [2, p. 45]. This comes with the
advantages of a standardized design process and deterministic synthesis results. Moreover, the
synthesis tools provide support for FSM structures [3, p. 171].
In general, an FSM that is implemented in hardware is composed of a state memory S a transition
function δ and an output function λ [3, p. 171]. A distinction between different FSM types is made
concerning the relation between the output signal Yt, the current state Zt the input signal Xt and
the output function λ. Generally, FSMs can be categorized in Mealy, Moore and Medvedev types.
[4] Within the scope of this project, the Mealy FSM with adjustments to the structure presented in
[4] forms the basic FSM type for all implementation in the IP core. The final structure is illustrated
by Fig. 2.1.

S

δ

Xt
λ A Yt

Zt+1Zt

Figure 2.1: Basic FSM structure for the implementation in the IP core. Dashed components are
sequential logic whereas solid components are combinational logic. All components
marked in red are implemented in a single sequential process, whereas the transition
logic δ is realized in a separate combinational process. The structure has been derived
from [4] and [5].

Thilo Wendt Institut ELSYS 3

2 Theory

The decision for the structure presented in Fig. 2.1 is explained within the following paragraphs.
For externally available signals it is desirable to produce a hazard free output with a low jitter.
Within the scope of the current project, the SPI of the ADC that shall be operated by the FPGA
demands for a high signal quality [6]. In order to guarantee an output signal without hazards,
an output register is required. Without the output register, the function λ is directly exposed to
the physical interface which potentially leads to hazards due to the combinational nature of λ [5].
This requirement can either be satisfied by the Medvedev FSM where the state memory register
directly forms the output signal or by a Mealy FSM extended with an output register A.
In a Medvedev implementation, the output vector is directly formed directly by the state memory
S. This leads to a high verification effort in case of a large output vector and only few states being
used [4]. In comparison to the Medvedev FSM the Moore and the Mealy FSM offer more flexibility
since the output signal is not directly coupled to the state memory but it is formed by an arbitrary
output function. The Mealy structure offers the possibility to produce different output signals
while staying in the same state whereas the output of the Moore structure exclusively depends on
the current state. Generally, a Mealy FSM can be converted to a Moore FSM but for every different
output signal that is produced in the same state at the Mealy structure a new state in the Moore
structure is created [2]. This leads to an increased number of states which is confusing for the
implementation in VHDL. Therefore, the Mealy FSM with an output register has been considered
as the basic structure for all FSM implementations in the IP core. In contrast to the structures
presented in [4], the information about the current state Zt is fed to the output function λ as well.
This is necessary to distinguish between transitions from different states. [5] introduces another
structure, where δ and λ are combined into a single process. Indeed, this offers the possibility to
consider Zt for the formation of the output signal as well. These approaches have been merged
together to the structure presented in Fig. 2.1.

2.1.2 State Reduction of FSMs

In general, an FSM with a minimal number of states is desirable for the implementation in hard-
ware in order to save resources. However, the first draft of an FSM usually does not lead to a
minimal number of states. Therefore, a state reduction needs to be performed before implement-
ing the FSM in hardware. The general concept of a state reduction is derived from [2, p. 39-44].
The key concept of the state reduction is based on the following principles [2, p. 39]: Two states
are equivalent if

1. ...they produce the same output signal for the same input signal.

2. ...they transition to an equivalent state for the same input signal.

However, it is fundamental to these principles that two states which shall be tested for equivalency
expect the same input signal. Consequently, it needs to be verified if there exist states that expect
the same input signal in a first step. If this is not the case, no equivalent states exist in the FSM.

Thilo Wendt Institut ELSYS 4

2 Theory

The method shall be illustrated on the example of the SPI master which is implemented in the
ADC IP core. The state reduction is performed in the following five steps:

1. Definition of a potentially not minimal state machine.

2. Definition of a formal input alphabet X.

3. Definition of a formal output alphabet Y.

4. Examination of the states for equivalence.

5. Design of a minimal FSM.

Fig. 2.2 shows the FSM of the above mentioned SPI master. The definition of this FSM is not
further explained in this section but a detailed description can be found in section 3.1.1.

Init

idle

pre_wait post_wait

shift_out sample

[S_DEL_COUNT <= 0]
/SS_OUT_N <= '1'

[S_DEL_CLK > 0]
/S_DEL_CLK <=
S_DEL_CLK - 1

[(S_DEL_CLK <= 0) and (BIT_COUNT <
DATA_WIDTH)]

/SCLK <= not(SCLK)
S_DEL_CLK = CLK_DIV

[(S_DEL_COUNT <= 0) and (CPHA = '0')]
/SCLK <= not(CPOL)

S_RX_BUFFER <= S_RX_BUFFER(DATA_WIDTH - 2
downto 0) & MISO

S_BIT_COUNT <= S_BIT_COUNT - 1
S_DEL_CLK <= CLK_DIV

[(S_DEL_COUNT <= 0) and (CPHA =
'1')]

/SCLK <= not(CPOL)
S_DEL_CLK <= CLK_DIV

/SS_OUT_N <= '1'
BUSY <= '0'

SCLK <= CPOL
read SPI_CFG

[S_DEL_CLK <= 0]
/SCLK <= not(SCLK)

S_RX_BUFFER <= S_RX_BUFFER(DATA_WIDTH - 2 downto 0) & MISO
S_BIT_COUNT <= S_BIT_COUNT - 1

S_DEL_CLK <= CLK_DIV
[S_DEL_CLK > 0]

/S_DEL_CLK <= S_DEL_CLK - 1

[ENABLE = '0']
/SS_OUT_N <= SS_IN_N

SCLK <= SCLK_IN

[S_DEL_COUNT > 0]
/S_DEL_COUNT <= S_DEL_COUNT - 1

[S_DEL_COUNT > 0]
/S_DEL_COUNT <= S_DEL_COUNT - 1

[ENABLE='1']
/SS_OUT_N <= '0'

SCLK <= CPOL
BUSY <= '1'

S_DEL_COUNT <= PRE_DELAY
S_BIT_COUNT <= (DATA_WIDTH + 1)

[BIT_COUNT <= 0]
/SCLK <= CPOL

BUSY <= '0'
S_DEL_COUNT <= POST_DELAY

S_RX_OUT_BUFFER <= S_RX_BUFFER

Figure 2.2: FSM of the SPI master. The conditions for the transition are written in square brackets
while the output signal is described after the slash on the transition arrow.

Thilo Wendt Institut ELSYS 5

2 Theory

Table 2.1: Input alphabet of the FSM of the SPI master. Boolean values like ENABLE or CPHA can be
inserted in the alphabet directly while integer values must satisfy a certain condition
in order to produce a Boolean value that can be modeled by a bit in the input vector.

Vector index Condition

0 ENABLE
1 CPHA
2 S DEL COUNT > 0
3 S DEL COUNT ≤ 0
4 S DEL CLK > 0
5 S DEL CLK ≤
6 S BIT COUNT > 0
7 S BIT COUNT ≤ 0

However, this representation of the FSM is not suitable for a direct state reduction. The conditions
marked on the transitions in the FSM form the input grammar which is based on the input
alphabet. As a first step, a formal input alphabet is defined and input words are identified. The
input alphabet is defined by a vector where every unique condition defines a bit. The encoding is
shown in Table 2.1.
Based on the input alphabet defined in Table 2.1 an input grammar can be identified for the FSM
from Fig. 2.2. The grammar is composed of input words that are formed by the input alphabet.
Allowed values for the bits in the input vector are true (1) false (0) and don’t care (-).

Table 2.2: Input grammar of the FSM of the SPI master. The bits in the input vector are further
explained in Table 2.1.

Bit in input vector

Transition 0 1 2 3 4 5 6 7

IDLE→ IDLE 0 - - - - - - -
IDLE→ PRE WAIT 1 - - - - - - -
PRE WAIT→ PRE WAIT - - 1 0 - - - -
PRE WAIT→ SHIFT OUT - 1 0 1 - - - -
PRE WAIT→ SAMPLE - 0 0 1 - - - -
SHIFT OUT→ SHIFT OUT - - - - 1 0 - -
SHIFT OUT→ SAMPLE - - - - 0 1 - -
SAMPLE→ SAMPLE - - - - 1 0 1 0
SAMPLE→ SHIFT OUT - - - - 0 1 1 0
SAMPLE→ POST WAIT - - - - - - 0 1
POST WAIT→ POST WAIT - - 1 0 - - - -
POST WAIT→ IDLE - - 0 1 - - - -

Thilo Wendt Institut ELSYS 6

2 Theory

After the definition of the input alphabet and the input grammar, the states can be examined for
equal input words. For example the self transitions of PRE WAIT and POST WAIT expect the
same input word but when transitioning to another state, the input words differ. In conclusion,
no states with equal input grammars can be found and therefore the investigation for transitions
to equal states and the examination of the output signal is not applicable. The considered FSM
with the given input signals is therefore minimal.
Similar considerations have been performed for the other FSMs, which are explained in section
2.4. However, non of the considered FSMs could be minimized and therefore the procedure for
the other FSMs is not shown in this report.

2.1.3 FSM Implementation in HDL

When a minimal FSM is found, it can be implemented in a hardware description e.g. in VHDL.
Using three processes is the most convenient method to describe an FSM in VHDL. Referring to
Fig. 2.1, S, A and λ are implemented in a single sequential process, whereas δ is realized by a
combinational process. The states of the FSM are defined as an enumeration as shown in listing
2.1. The synthesis tool provides the attributes fsm encoding to define the encoding of the states.
For example the encoding can be set to one hot if this is required by the application. However, in
this case no defined encoding is required and therefore the attribute is set to auto which allows
the tool to determine the most eligible encoding. The attribute fsm safe state can be set to
synthesize extra logic to avoid a deadlock in an undefined state [3, p. 52]. Fig. 2.1 shows that
the signals curstate, which holds the current state corresponding to Zt and the signal nxtstate,
which holds the output of the transition function δ corresponding to the next state Zt+1, are
required for the operation of the FSM.

type state_type is (IDLE,PRE_WAIT,SHIFT_OUT,SAMPLE,POST_WAIT);

signal curstate, nxtstate : state_type := IDLE;

attribute fsm_encoding : string;

attribute fsm_encoding of curstate, nxtstate : signal is "auto";

attribute fsm_safe_state : string;

attribute fsm_safe_state of curstate, nxtstate : signal is "power_on_state";

Listing 2.1: State declaration of an FSM in VHDL.

After the definition of the states, the combinational process for the transition function δ can be
derived from the graphical representation from Fig. 2.2. The sensitivity list is composed of the
signals from the input alphabet as defined in Table 2.1 and the current state. This corresponds to
the signal flow from Fig. 2.1. The conditions for the state transitions can be directly copied from
the graphical representation of the FSM. Listing 2.2 shows the implementation of the transition
function. The description of S is shown in listing 2.3 and the implementation of λ and A are given
in listing 2.4. Referring to Fig. 2.2, the listing contains the output signals given induced by the
state transitions. The implementation matches the signal flow presented by Fig. 2.1.

Thilo Wendt Institut ELSYS 7

2 Theory

transition: process(curstate, ENABLE, S_CPHA, S_DEL_COUNT, S_DEL_CLK, S_BIT_COUNT)

begin

case curstate is

when IDLE =>

if (ENABLE = '1') then nxtstate <= PRE_WAIT;

else nxtstate <= IDLE;

end if;

when PRE_WAIT =>

if ((S_DEL_COUNT <= 0) and (S_CPHA = '1')) then nxtstate <= SHIFT_OUT;

elsif ((S_DEL_COUNT <= 0) and (S_CPHA = '0')) then nxtstate <= SAMPLE;

else nxtstate <= PRE_WAIT;

end if;

when SHIFT_OUT =>

if (S_DEL_CLK <= 0) then nxtstate <= SAMPLE;

else nxtstate <= SHIFT_OUT;

end if;

when SAMPLE =>

if (S_BIT_COUNT <= 0) then nxtstate <= POST_WAIT;

elsif ((S_DEL_CLK <= 0) and (S_BIT_COUNT > 0)) then nxtstate <= SHIFT_OUT;

else nxtstate <= SAMPLE;

end if;

when POST_WAIT =>

if (S_DEL_COUNT <= 0) then nxtstate <= IDLE;

else nxtstate <= POST_WAIT;

end if;

when others => nxtstate <= IDLE;

report "Undecoded State" severity note;

end case;

end process transition;

Listing 2.2: VHDL description of the transition function δ.

Thilo Wendt Institut ELSYS 8

2 Theory

91 output_state_mem: process(CLK)

92 begin

93 if rising_edge(CLK) then

94 if (reset_n = '0') then

95 curstate <= IDLE;

96 S_DEL_COUNT <= 0;

97 S_DEL_CLK <= 0;

98 S_BIT_COUNT <= 0;

99 S_RX_OUT_BUFFER <= (others => '0');

100 S_RX_BUFFER <= (others => '0');

101 S_PRE_DELAY <= (others => '0');

102 S_POST_DELAY <= (others => '0');

103 S_CLK_DIV <= (others => '0');

104 S_SCLK <= CPOL;

105 else

106 curstate <= nxtstate;

Listing 2.3: VHDL description of the state memory S. The implementation features a synchronous
reset which is implemented in line 94 to 104. The actual state memory is implemented
in line 106.

Thilo Wendt Institut ELSYS 9

2 Theory

107 case nxtstate is

108 -- Transition to IDLE

109 when IDLE =>

110 BUSY <= '0';

111 -- latch in SPI config

112 S_PRE_DELAY <= PRE_DELAY;

113 S_POST_DELAY <= POST_DELAY;

114 S_CLK_DIV <= CLK_DIV;

115 S_CPOL <= CPOL;

116 S_CPHA <= CPHA;

117 -- pull SS high at least for one clock cycle

118 case curstate is

119 when POST_WAIT =>

120 SS_OUT_N <= '1';

121 when others =>

122 if (MANUAL = '1') then

123 SS_OUT_N <= SS_IN_N;

124 S_SCLK <= SCLK_IN;

125 else

126 SS_OUT_N <= '1';

127 S_SCLK <= S_CPOL;

128 end if;

129 end case;

Listing 2.4: VHDL description of the output function λ. The given code is part of the process from
listing 2.3. Therefore, it describes a part of the combinational circuit λ, which forms
the input for the output register A. Line 107 shows is the output of the transition
function δ a.k.a. the next state. Line 118 describes the input of the current state.

Thilo Wendt Institut ELSYS 10

2 Theory

2.2 Context Analysis

The IP core is a contribution to the UltraZohm project. Therefore, a basic understanding of the
UltraZohm is necessary. In brief, the UltraZohm is a general purpose platform for the rapid
prototyping of control algorithms for power electronic systems. The system is build around a
Xilinx Zynq UltraScale+ SoC FPGA providing several interfaces for the acquisition of actual
values and the output of control signals. Fig. 2.3 shows the hardware of the UltraZohm. The outer
interface of interest in this report is the Analog Adapter Board, since the ADCs for the value
acquisition are located here [1]. In the following sections, an introduction to the hardware and
software ecosystem of the UltraZohm is given.

Figure 2.3: Hardware of the UltraZohm. From left to right: SoC (red), analog adapter board
(yellow) and digital adapter board with optical transmitters (blue).

2.2.1 Hardware System Context

In order to abstract the system ”UltraZohm” a SysML representation is used within this section.
Fig. 2.5 displays the UltraZohm system in it’s usual context. Since this project exclusively deals
with the efficient acquisition of actual values from externally connected voltage source inverters,
the interface of interest is the ”AnalogSignals” interface. The physical medium is a twisted pair
cable which is connected to the UltraZohm via RJ45 connectors as shown in Fig. 2.3. Fig. 2.4
displays the connection from the outer interface of the UltraZohm to the Analog Adapter Board.
The Analog Adapter Board is responsible for converting the analog value from the voltage source
inverter to a digital value. It carries the LTC2311 ADC and appropriate signal adjustments. Within
the scope of this report the main interface of interest is the connection from the LTC2311 via the
Carrier Board to the SoC FPGA. This interface can be subdivided into the following components:

Thilo Wendt Institut ELSYS 11

2 Theory

• The LTC2311 as an SPI slave

• The signal traces on the carrier board

• The input and output buffers in the FPGA

• SPI master implemented in the FPGA

Especially the SPI interface of the ADC and the routing on the printed circuit boards (PCB)
feature significant delay times that must be taken in account when operating the system. A
detailed analysis of the hardware situation is performed in section 3.1.1. The ADC IP core is the
functional interface against the hardware of the ADC. It is responsible to control the data flow
into the FPGA which is generated by the ADC.

ibd [package] Architecture [CompositionUZ]

«block»
UltraZohm

namespace

«proxy» RJ45_Ethernet :
JavaGUIData

«proxy»
MiniUSBSocket :
DebugConnector

«proxy»
CAN0/1

«proxy» RubberSocket : LineVoltage

«proxy»
RJ45Socket_AnalogSignal :

AnalogSignals

«proxy»
GateSignalSocket :

DigitalSignalsExternal

: CarrierBoard[1]

«proxy»
PowerInputSocket :

24VSupply

«proxy»
X4RJ45_Ethernet :

JavaGUIData

«proxy»
X8_XMOD :

DebugConnector

«proxy»
X7A_CAN1

«proxy» SamtecAnalogSocket : AnalogConnector

«proxy» SamtecDigitalSocket : DigitalConnector

«proxy» SPIviaLVDS : FastADCData

«proxy» SPI : SlowADCData

«proxy» I2C0 : ConfigAndStatus

«proxy» Pilot : Pilot

«proxy» Power : PowerInternal

«proxy» GPIO

«proxy» CollectiveFault : CollectiveFault

«proxy» DigitalSignalsInternal :
DigitalSignalsInternal

«proxy» GPIO

«proxy» I2C0 : ConfigAndStatus

«proxy» Pilot : Pilot

«proxy» Power : PowerInternal

«proxy» CollectiveFault :
CollectiveFault

: AnalogAdapterBoard[0..3]

«proxy» AnalogPlug : AnalogConnector

«proxy»
RJ45_AnalogSignals :

AnalogSignals

«proxy» GPIO

«proxy» SPIviaLVDS : FastADCData

«proxy» SPI : SlowADCData

«proxy» I2C0 : ConfigAndStatus

«proxy» Pilot : Pilot

«proxy» Power : PowerInternal

«proxy» CollectiveFault : CollectiveFault

: DigitalAdapterBoard[0..5]

«proxy» DigitalPlug : DigitalConnector

«proxy»
GateSignalSocket :

DigitalSignalsExternal

«proxy» Power : PowerInternal

«proxy» Pilot : Pilot

«proxy» I2C0 : ConfigAndStatus

«proxy» GPIO

«proxy» DigitalSignalsInternal :
DigitalSignalsInternal

«proxy» CollectiveFault : CollectiveFault

: PowerSupply[1]
«proxy»

RubberSocket :
LineVoltage

«proxy»
24VPlug :
24VSupply

Figure 2.4: Detailed SysML representation of the Analog Adapter Board and the Carrier Board.
Within this project only the interface ”SPIviaLVDS” that carries the fast ADC data is
used.

Thilo Wendt Institut ELSYS 12

2 Theory

: UltraZohm
«proxy»

RubberSocket :
Lin eVoltage

«proxy» RJ45_Ethernet :
JavaG UID ata

«proxy» MiniUSBSocket :
DebugConnector

«p roxy» GateSignalSocket :
D igitalSign alsExternal

«proxy» RJ45Socket_AnalogSignal : AnalogSignals

«proxy» CAN0/1

«proxy» UART0 : TerminalData

«proxy» JTAG : DebugData

: LinePower
«proxy»

RubberPlug :
Lin eVoltage

: DebuggingInterface

«proxy» MiniUSBPlug_JTAG :
DebugConnector

«proxy» UART0 : TerminalData

«proxy» JTAG : DebugData

: VoltageSourceInverter

«p roxy» GateSignalPlug :
D igitalSign alsExternal

«proxy»
RJ45Plug_AnalogSignal :

A n alo gSignals

: JavaGUI
«proxy» RJ45_Ethernet :

JavaG UID ata

Figure 2.5: SysML representation of the UltraZohm in the context of it’s surrounding systems.
The interface of interest is the connection ”AnalogSignals” from the Voltage Source
Inverter to the UltraZohm.

Thilo Wendt Institut ELSYS 13

2 Theory

2.2.2 Software System Context

While section 2.2.1 contains an analysis of the connections on the outside of the UltraZohm the
following section describes the context of the IP cores inside the SoC FPGA. Fig. 2.6 displays
the next level of detail starting at the representation of Fig. 2.4. The value generated by the ADC
is transferred via SPI on LVDS to the FPGA where it is sampled by the ADC IP core. The IP
core forwards this value to it’s interface ”RAW VALUE” but also performs a conversion to an SI
scaled unit e.g. Volt or Ampere. This value is available at the output ”SI VALUE”. The IP core also
features other interfaces e.g. a hardware trigger or status signals but these signals are omitted in
the representation in Fig. 2.6.
Besides the FPGA the SoC also contains a dual core ARM Cortex R5 processor which is referred
to as the Real-Time Processing Unit (RPU). In the current setup, hardware instantiated in the
FPGA works as a hardware accelerator for the software running on the RPU. In order to transfer
the data obtained from the ADC quickly to the software the tightly coupled memory (TCM) is
used. This is basically a RAM with low access times for the RPU. The data from the ADC IP core
is transferred to the AXI2TCM IP core which then writes the data to a predefined address in the
TCM.

: CarrierBoard[1]

«proxy»
SamtecAnalogSocket :

AnalogConnector

: SOM

: properties
 : APU

: FPGA

«proxy» Analog :
AnalogConnector

«IP-Core»
ADC1:

ULTRAZOHM_ADC

/SPIviaLVDS:
FastADCData

: RPU

AXI4

«IP-Core»
ADC2:

ULTRAZOHM_ADC

/SPIviaLVDS:
FastADCData

: TCM

IO

«IP-Core»
:AXI2TCM

/RAW_VALUE:
~RawValue

/SI_VALUE:
~SIValue

:UserSoftware

Figure 2.6: SysML representation of the UltraZohm in the context of it’s surrounding systems.
The interface of interest is the connection ,,AnalogSignals” from the Voltage Source
Inverter to the UltraZohm.

Thilo Wendt Institut ELSYS 14

2 Theory

2.3 Requirements

The requirements analysis is split up in a functional and a non-functional analysis. Every re-
quirement is identified by a unique ID which carries the prefix FUNC for functional requirement
and NOF for non-functional requirements. The functional analysis is carried out in SysML use
case diagrams. Other components associated with the requirement are displayed in the use case
diagrams as well. The association is illustrated with a general dependency in SysML.

2.3.1 Functional Requirements

Fig. 2.7 shows the main functional requirements of the IP core. In brief, the IP core shall control
the physical interface of the ADC and process the raw value obtained from the ADC. These
actions shall be controllable and configurable by the software application which is running on
a processor in the SoC. FUNC1 and FUNC3 are further subdivided. The corresponding use case
diagrams are displayed in Fig. 2.8 for FUNC1 and Fig. 2.9 for FUNC3.

«IP-Core»
ULTRAZOHM_ADC

Convert to SI Value

Communicate with
User Software

Control ADC Channels

id=FUNC3

id=FUNC2

id=FUNC1

«block»
AnalogAdapterBoard

UserSoftware

Figure 2.7: Top level use case diagram of the ADC IP core

Thilo Wendt Institut ELSYS 15

2 Theory

«IP-Core»
ULTRAZOHM_ADC

Acquire Raw Value

Use Low Power modes

«block»
LTC2311

id=FUNC1.1

id=FUNC1.1

Figure 2.8: Sub use cases of the requirement ”ControlAdcChannels” (a.k.a. FUNC1)

The functional requirement ”ControlAdcChannels” (a.k.a. FUNC1) is further analyzed in Fig. 2.8.
Indeed, the main requirement is the acquisition of values from the ADC but is still desirable
to be able to use the low power modes of the chip. This feature will probably never be used in
laboratory environments but it is handy to have it implemented when applying the IP core to a
production application.

«IP-Core»
ULTRAZOHM_ADC

Set Offset

Set Conversion Factor

Add and Multiply

UserSoftware

id=FUNC3.1

id=FUNC3.2

id=FUNC3.3

Figure 2.9: Sub use cases of the requirement ”ConvertToSiValue” (a.k.a. FUNC3)

Furthermore, the hardware capabilities of the FPGA shall be used to process the raw value after
acquisition. It shall be possible to add an offset to the raw value and to multiply this sum with a
conversion factor. With a proper selection of the offset and the conversion factor the raw value
can be converted to an SI-scaled value e.g. Volt or Ampere. The offset and the conversion factor
shall be adjustable by the software application. These requirements are illustrated in Fig. 2.9

Thilo Wendt Institut ELSYS 16

2 Theory

2.3.2 Non-Functional Requirements

Besides the functional requirements that describe what the ADC IP core is supposed to do, a
number of non-functional requirements that describe the way the functions are implemented must
be specified. An important distinction is made between features that shall be adjustable during
runtime and those that are only changeable before the synthesis of the hardware description. This
synthesis is comparable to the compilation of high-level software code e.g. a program written in
C to the hardware specific machine language of the target platform.

NOF1 The bit width of the output value of the ADC shall be adjustable before synthesis.

NOF2 The ADC shall be operated over SPI where the ADC IP core acts as an SPI master. This is
required by the ADC since it features an SPI.

NOF3 It shall be possible to select a slice of the result vector of the conversion. The width of the
slice is determined before synthesis by selecting the MSB and the LSB from the vector.

NOF4 The IP core shall feature an Advanced eXtensible Interface (AXI) 4 Lite as a communica-
tion interface to the software application.

NOF4.1 The following parameters shall be configurable by software through AXI 4 Lite:

• CPOL and CPHA of the SPI

• Timing parameters of the SPI

• Selection which ADCs shall be triggered when receiving a trigger signal

• Value that is added to the raw value of the ADC (a.k.a offset)

• Value with which the sum of the offset and the raw value is multiplied (a.k.a conversion
factor)

NOF4.2 The following control events can be triggered by software via AXI 4 Lite:

• Adjustment of the trigger mode

• Trigger by software

• Reset by software

NOF5 The offset and the conversion factor shall be unique to every single ADC that is connected
to the SoC.

NOF6 The IP core shall provide a continuous trigger mode, where all ADCs are triggered as
frequent as possible and a triggered mode, where a conversion is either triggered by software or
by a hardware port.

Thilo Wendt Institut ELSYS 17

2 Theory

NOF7 The raw value and the converted value shall be output as a separate vectors at the
hardware interface of the ADC. The results from all connected ADCs are concatenated to a single
output vector.

NOF8 Signed integer in two’s complement is the format for the following values:

• The raw value of the ADC (given by the LTC2311)

• The offset and the conversion factor

• The output of the conversion unit

No floating point conversion of the converted value shall be performed in the IP core.

NOF9 The IP core shall be organized in synchronous groups. In one synchronous group a
number of ADCs is controlled with a single SPI clock signal and a single SPI slave select signal.
Fig. 2.10 illustrates the requirement.

NOF9.1 The number of groups and the number of ADCs per group is adjustable before synthesis.

NOF9.2 Each group can be triggered independently

NOF10 The IP core shall include an optional LVDS buffer. The inclusion of the LVDS buffer is
adjustable before synthesis.

ADC1.1

ADC1.2

ADC1.3

ADC1.4

ADC2.1

ADC2.2

ADC2.3

ADC2.4

SoC

ADC1.1

ADC1.2

ADC1.3

ADC1.4

ADC2.1

ADC2.2

ADC2.3

ADC2.4

SoC

SCLK via LVDS

MISO via LVDS

SS N single ended

Figure 2.10: Connection between the SoC and the ADCs. The representation on the left side shows
the default case, where all ADCs are controlled synchronously by a single SS N and
SCLK signal. The figure on the right side shows the configuration, where the ADCs
are subdivided in two groups and each group is controlled independently.

Thilo Wendt Institut ELSYS 18

2 Theory

2.4 Architecture

Based on the requirements analysis from section 2.3 an architecture for the implementation of
the IP core has been created. An abstract representation of this architecture is given in the SysML
component diagram in Fig. 2.11.

«IP-Core»
ULTRAZOHM_ADC

+ CHANNELS_PER_MASTER: natural
+ CONVERSION_WIDTH: natural
+ DATA_WIDTH: natural
+ DIFFERENTIAL: boolean
+ OFFSET_WIDTH: natural
+ RES_LSB: natural
+ RES_MSB: natural
+ SPI_MASTER: natural

SPI_MASTERRAW_TO_SI

ADC_CONTROLLER AXI4LITE_SLAVE

«block»
LTC2311

Add and Multiply Acquire Raw Value

Set Conversion Factor Set Offset

Communicate with
User Software

Use Low Power modes

AdcIpCoreDriver

«satisfy»

1

«satisfy»«satisfy»

CHANNELS_PER_MASTER1

«satisfy»

1

«satisfy»

SPI_MASTER

«satisfy»

Figure 2.11: Component diagram of the ADC IP core. The functional requirements from section
2.3.1 are shown in this representation in order to illustrate the relations between
the components and the requirements. This way, every component is functionally
justified and the responsibilities are clearly disposed.

All components from Fig. 2.11 represent a single VHDL file that contains the hardware descrip-
tion of the module. Subcomponents are instantiated in the parent component. The number of
subcomponents that are instantiated in a parent component is given by the parameter of the
composition relationship. The top level component ULTRAZOHM ADC also provides the interface

Thilo Wendt Institut ELSYS 19

2 Theory

that is visible to the user of the IP core. This interface is composed of the hardware ports as well as
the design parameters with which the IP core can be customized to the application. Furthermore,
the top level component contains the instantiation of the differential input and output buffers
which is not shown in the representation of Fig. 2.11. In combination with design parameter
DIFFERENTIAL the top level components fulfills the requirement NOF10
The design parameters SPI MASTER and CHANNELS PER MASTER determine the number of groups
and the number of synchronously controlled ADCs per group. In Fig. 2.11 a group is represented
by an instance of the component ADC CONTROLLER that contains a number of SPI masters which is
adjusted with the parameter CHANNELS PER MASTER. In conclusion, NOF9 and NOF9.1 are fulfilled
by the modular architecture of the IP core. Besides FUNC1 the component SPI MASTER also satisfies
the requirements NOF2 and NOF1. The fulfillment of NOF1 is not visible in the representation above
but it is explained in section 3.1.
NOF4 is satisfied by the component AXI4LITE SLAVE that provides the communication interface
to the software application. As shown in section 3.1, NOF4.1 and NOF4.2 are implemented by the
modules AXI4LITE SLAVE and ULTRAZOHM ADC.
The components ULTRAZOHM ADC ADC CONTROLLER and SPI MASTER are implemented as finite state
machines. The state machines are implemented as a variant of Mealy machine with an output
register as described in section 2.1. In the following sections, all subcomponents of the ADC IP
core are described in detail.

Thilo Wendt Institut ELSYS 20

3 Results

The following chapter contains the description of the components presented in section 2.4. For
this purpose, the FSMs, which define the functional behavior of the components are presented but
the implementation in VHDL is omitted, since it follows the methodology presented in section 2.1.
The source code is available at the UltraZohm project repository which can be accessed without
restrictions. Furthermore, the verification flow and results are described in section 3.2.

3.1 Implementation

Within the following sections, the components shown in Fig. 2.11 are explained in detail. While
the design of the FSMs that describe the functionality of the modules is explained and justified, the
implementation in HDL is omitted in this chapter. It follows the principle introduced in section
2.1.3. The development follows a bottom up approach. The design of the SPI master is explained
first. Subsequently, the integration in the components ADC CONTROLLER and ULTRAZOHM ADC is
explained. Finally, the design of the user interface formed by the AXI and the hardware interface
is presented.

3.1.1 SPI Master

In the following section, an analysis of the hardware situation is given. This includes hardware
interface of the LTC2311, the PCB layout between the SoC and the LTC2311 as well as the IO
interface of the SoC.

Analysis of the hardware interface

Besides a standard CMOS interface, the LTC2311 offers the possibility to transfer data via low
voltage differential signals (LVDS) [6, p. 23], which has been used in the implementation of the
UltraZohm hardware [7]. LVDS offers a more robust communication for high-speed signals than
a single ended CMOS connection [8, p. 868]. Moreover, the LVDS standard can be used effortless
because the SoC FPGA offers integrated support [9, p. 13].
As a first step, the serial interface of the ADC must be analyzed. The interface is designed similarly
to a standard SPI, however it features significant differences which must taken into account when
designing the counterpart in the FPGA. Within the scope of this project, the signal names of the
interface have been adapted to the standard SPI naming scheme. Table 3.1 shows the mapping of
the signal names to the data sheet of the LTC2311.

Table 3.1: Signal definitions for the scope of this project.

Data Sheet Renamed Description

CNV SS N Slave Select low active
SCK SCLK Serial Clock
SDO MISO Master In Slave Out

Thilo Wendt Institut ELSYS 21

3 Results

T+0 T+1SCLK @ FPGA output

SCLK @ ADC input

MISO @ ADC output B(T-1) B(T+0) B(T+1)

MISO @ FPGA input B(T-1) B(T+0)

Timing tPCB tDSCKSDOV tPCB > tsetup

T+0 T+1SCLK @ FPGA output

SCLK @ ADC input

MISO @ ADC output B(T-1) B(T+0)

MISO @ FPGA input B(T-1) B(T+0)

Timing tPCB tDSCKSDOV tPCB > tsetup

Timing diagram 3.1: Timing of the signals between the SoC and the ADC with fSCLK ≈ 50 MHz in
the upper diagram and fSCLK ≈ 100 MHz in the lower diagram. The periods
mentioned in the Timing row are explained in Table 3.2. The trigger instant
for the ADC to output a new bit is marked with an arrow. The red line in the
lower diagram shows the timing violation that may occur for the furthest
ADC.

Timing diagram 3.1 illustrates the timing of the SPI between the FPGA and the LTC2311. The
SS N signal initiates a new conversion of an analog value and enables the serial interface of the
LTC2311. SCLK is the clock signal for the conversion unit of the ADC but it also controls the read
out process of the buffer which contains the result of the previous sample. On each falling edge a
new bit of the previously converted sample is output as a serial bit stream on MISO. This behavior
is further discussed in section 3.1.3.
In the following, an analysis of the behavior of the serial interface is carried out, which forms
the basis for the FSM presented in Fig. 3.1. Timing diagram 3.1 shows the situation between the
FPGA and the ADC. The diagram illustrates that the FPGA must sample a new bit on the falling
edge of SCLK. Since a falling edge also triggers the ADC to output a new bit after a delay of
tDSCKSDOV , the bit sampled by the ADC corresponds to the previous falling edge. Considering the
first falling edge of SCLK as instant T+0 the bit B(T-1) is sampled on this falling edge.
Especially important is the considerations of the delay times invoked by the transmission line
between the FPGA and the ADC which is referred to as tPCB in the diagram. tPCB mainly deter-
mines the maximum frequency for SCLK, which can be derived from timing diagram 3.1. The
timing condition for a proper transfer is expressed in (3.1).

fSCLK <
1

2 · tPCB + tDSCKSDOV + tsetup
(3.1)

Thilo Wendt Institut ELSYS 22

3 Results

While tDSCKSDOV and tsetup are given by the hardware, tPCB depends on the physical distance of
the ADC from the SoC. Considering tPCB from Table 3.2 the highest frequency is given in (3.2)
for the furthest ADC.

fSCLK <
1

2 · 0.9 ns + 7.4 ns + 1 ns
∼= 98 MHz (3.2)

After the data sheet the ADC can be driven with up to 105 MHz but due to the hardware setup
this is not possible for all ADCs in the given configuration. Indeed, the period considered for
tDSCKSDOV is the worst case value and the data sheet also specifies a lower typical delay time of
4 ns. With the typical delay time, a proper transfer is possible but when driving the ADC with up
to 100 MHz the above mentioned circumstances must be considered, since the timing depends on
the individual chip.

Table 3.2: Relevant delay times of the SPI to the ADC adapter board [6].

Abbreviations Value Description

tPCB1 0.9 ns Propagation delay to the first analog adapter card slot
tDSCKSDOV 7.4 ns Data valid delay from falling edge of SCLK

The aforementioned characteristics of the hardware interface still match the behavior of a standard
SPI. However, the LTC2311 features differences on the beginning of the transfer. Timing diagram
3.2 shows a complete transfer of a sample from the ADC to the FPGA as it is implemented in
the IP core. The diagram illustrates the issue, that the MSB is sampled twice, while the LSB is
truncated with a standard SPI. The problem can not be solved by adjusting the CPHA parameter,
which determines the edge of SCLK on which the first sample is taken by the SPI master [10], since
the sampling must take place on the first edge as illustrated by timing diagram 3.1. Consequently,
this issue has been resolved in the current implementation by sampling 17 bits per transfer and
truncating the MSB.

SS N @ ADC input

SCLK @ FPGA output

SCLK @ ADC input

MISO @ ADC output B15 B14 B0

MISO @ FPGA input B15 B14 B0

Sample events @ FPGA

Timing diagram 3.2: Timing of a complete transfer from the ADC to the FPGA. The bits on MOSI
are sampled by the IP core on the instants marked with red vertical lines.
For a 16 bit sample 17 sample events take place where the MSB is sampled
twice, which is corrected in the final result.

Thilo Wendt Institut ELSYS 23

3 Results

Implementation of the SPI master

Based on the hardware analysis, the SPI master module of the IP core can be designed. In
the following sentences an explanation of the implementation, which is composed of the entity
declaration from listing 3.1 the signal declaration from listing 3.2 and the FSM from Fig. 3.1, is
given. The entity definition is the interface for the upper component in the hierarchy, which is
the ADC Controller. The implementation in HDL is explained in section 2.1.3.
The reset state of the FSM is IDLE. In this state, a manual control of the signals SS N and SCLK is
possible which is required to enter the sleep and nap modes of the LTC2311. The trigger event
ENABLE =′ 1′ immediately starts the transfer by pulling SS N to 0. The LTC2311 requires a
certain period between the falling edge of SS N and the first falling edge of SCLK, which is
referred to as the PRE DELAY that can be configured with the corresponding parameter via AXI. It
is implemented with the PRE WAIT state, in which the FSM stays for PRE DELAY + 1 system clock
cycles. The actual transfer happens in the sates SHIFT OUT and SAMPLE. A duplex communication
is not implemented but a new bit for a communication to an SPI slave would be shifted on the
serial bus on the transition from SHIFT OUT to SAMPLE. The SCLK edge, on which the bit on the
serial bus is sampled, can be adjusted with the parameter CPHA. If this parameter is 0 the sampling
takes place on the first edge which is required for the LTC2311. The sampling of the bit on the bus
takes place on the transition from SAMPLE to SHIFT OUT. The SCLK frequency can be adjusted with
the CLK DIV parameter which is adjustable by software as well. The clock scaling is implemented
by the counter S DEL CLK running in the states SHIFT OUT and SAMPLE which is reset on the
transition between these states. The actual clock frequency of SCLK is given by (3.3). Therefore
the maximum SCLK frequency is fSystemClock/2.

fSCLK =
fSystemClock

2 · (CLK DIV + 1)
(3.3)

After the transmission completes, the state POST WAIT is entered which satisfies the requirement
for a delay between the last SCLK edge and the rising edge of SS N [6]. Similar to the PRE WAIT

state, the time is adjusted by the corresponding parameter and is given with POST DELAY + 1
system clock cycles. The discard of the double-sampled MSB is implemented by setting the
S BIT COUNT, which controls the number of bits to transfer, to DATA WIDTH + 1 while maintaining
the width of the input register S RX BUFFER. This way the first bit is discarded with the sampling
of the LSB. This issue is illustrated in timing diagram 3.2. The total latency from the trigger to
a valid result at the output vector is given by (3.4). The equation outputs the latency in system
clock cycles.

nlat,SPI = 4 + PRE DELAY + 32 · (CLK DIV + 1) + POST DELAY (3.4)

Thilo Wendt Institut ELSYS 24

3 Results

Init

idle

pre_wait post_wait

shift_out sample

[S_DEL_COUNT <= 0]
/SS_OUT_N <= '1'

[S_DEL_CLK > 0]
/S_DEL_CLK <=
S_DEL_CLK - 1

[(S_DEL_CLK <= 0) and (BIT_COUNT <
DATA_WIDTH)]

/SCLK <= not(SCLK)
S_DEL_CLK = CLK_DIV

[(S_DEL_COUNT <= 0) and (CPHA = '0')]
/SCLK <= not(CPOL)

S_RX_BUFFER <= S_RX_BUFFER(DATA_WIDTH - 2
downto 0) & MISO

S_BIT_COUNT <= S_BIT_COUNT - 1
S_DEL_CLK <= CLK_DIV

[(S_DEL_COUNT <= 0) and (CPHA =
'1')]

/SCLK <= not(CPOL)
S_DEL_CLK <= CLK_DIV

/SS_OUT_N <= '1'
BUSY <= '0'

SCLK <= CPOL
read SPI_CFG

[S_DEL_CLK <= 0]
/SCLK <= not(SCLK)

S_RX_BUFFER <= S_RX_BUFFER(DATA_WIDTH - 2 downto 0) & MISO
S_BIT_COUNT <= S_BIT_COUNT - 1

S_DEL_CLK <= CLK_DIV
[S_DEL_CLK > 0]

/S_DEL_CLK <= S_DEL_CLK - 1

[ENABLE = '0']
/SS_OUT_N <= SS_IN_N

SCLK <= SCLK_IN

[S_DEL_COUNT > 0]
/S_DEL_COUNT <= S_DEL_COUNT - 1

[S_DEL_COUNT > 0]
/S_DEL_COUNT <= S_DEL_COUNT - 1

[ENABLE='1']
/SS_OUT_N <= '0'

SCLK <= CPOL
BUSY <= '1'

S_DEL_COUNT <= PRE_DELAY
S_BIT_COUNT <= (DATA_WIDTH + 1)

[BIT_COUNT <= 0]
/SCLK <= CPOL

BUSY <= '0'
S_DEL_COUNT <= POST_DELAY

S_RX_OUT_BUFFER <= S_RX_BUFFER

Figure 3.1: FSM of the SPI master. The conditions for the transition are written in square brackets
while the output signal is described after the backslash on the transition arrow.

Thilo Wendt Institut ELSYS 25

3 Results

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

library work;

use work.ADC_LTC2311_PKG.all;

entity SPI_MASTER is

generic(

DATA_WIDTH : natural := 16; -- Number of bits per SPI frame

CHANNELS : natural := 1 -- Number of slaves that are controlled with

the same SS_N and SCLK↪→

);

port (

CLK : in std_logic;

RESET_N : in std_logic;

-- SPI ports

RX_DATA : out std_logic_vector((CHANNELS * DATA_WIDTH) - 1 downto 0);

CPHA : in std_logic;

CPOL : in std_logic;

SCLK : out std_logic;

SCLK_IN : in std_logic;

MISO : in std_logic_vector(CHANNELS - 1 downto 0);

SS_OUT_N : out std_logic;

SS_IN_N : in std_logic;

MANUAL : in std_logic;

-- Control Ports

BUSY : out std_logic;

ENABLE : in std_logic;

PRE_DELAY : in std_logic_vector(C_DELAY_WIDTH - 1 downto 0);

POST_DELAY : in std_logic_vector(C_DELAY_WIDTH - 1 downto 0);

CLK_DIV : in std_logic_vector(C_CLK_DIV_WIDTH - 1 downto 0)

);

end SPI_MASTER;

Listing 3.1: Entity declaration of the SPI master. Ports do not carry a prefix.

Thilo Wendt Institut ELSYS 26

3 Results

signal S_PRE_DELAY : std_logic_vector(C_DELAY_WIDTH - 1 downto 0);

signal S_POST_DELAY : std_logic_vector(C_DELAY_WIDTH - 1 downto 0);

signal S_CLK_DIV : std_logic_vector(C_CLK_DIV_WIDTH - 1 downto 0);

signal S_DEL_COUNT : integer range -1 to 255; -- 8 bit integer

signal S_DEL_CLK : integer range -1 to 65535; -- 16 bit integer

signal S_BIT_COUNT : integer range -1 to DATA_WIDTH + 1;

-- The bits from the SPI slave are clocked into the S_RX_BUFFER

signal S_RX_BUFFER : std_logic_vector((CHANNELS * DATA_WIDTH) - 1 downto 0);

-- S_RX_BUFFER <= S_RX_OUT_BUFFER after transmission ended

-- RX_DATA <= S_RX_OUT_BUFFER -> data avail. until next transmisson complete

signal S_RX_OUT_BUFFER : std_logic_vector((CHANNELS * DATA_WIDTH) - 1 downto

0);↪→

signal S_SCLK : std_logic;

signal S_CPOL : std_logic;

signal S_CPHA : std_logic;

-- State definition for the FSM

type state_type is (IDLE,PRE_WAIT,SHIFT_OUT,SAMPLE,POST_WAIT);

signal curstate, nxtstate : state_type := IDLE;

Listing 3.2: Signal declaration of the SPI master. Signals carry the prefix S in order to distinguish
them from ports.

Thilo Wendt Institut ELSYS 27

3 Results

3.1.2 Conversion Unit

The addition of an offset to the raw value gathered from the ADC and the multiplication with a
conversion factor is performed by a single DSP48E2 slice. Fig. 3.2 shows the relevant parts of a
DSP48 slice for the application. The component incorporates a input registers for all operands.
The result of the pre-adder is the sum of the input values A and D and it is multiplied with
the value B by the multiplier. The DSP48 slice implements a pipeline structure. The application
presented in this report can make use of a pipeline structure since multiple values are acquired
from the ADC concurrently and they must be further processed quickly while maintaining a low
resource footprint. After an initial latency of three clock cycles for the first value, a valid result is
output every clock cycle. This behavior is illustrated by the implementation in VHDL in listing
3.4 and the corresponding timing diagram 3.3. The implementation is based on the code example
given in [3, p. 98]. Timing diagram 3.3 and listing 3.4 illustrate that the timing of the conversion
is deterministic and it can be calculated before synthesis. This has been utilized in the component
ADC CONTROLLER.

UltraScale Architecture DSP48E2 Slice 7
UG579 (v1.10) September 22, 2020 www.xilinx.com

Chapter 1: Overview

Zynq® UltraScale+ MPSoC devices provide 64-bit processor scalability while combining
real-time control with soft and hard engines for graphics, video, waveform, and packet
processing. Integrating an Arm®-based system for advanced analytics and on-chip
programmable logic for task acceleration creates unlimited possibilities for applications
including 5G Wireless, next generation ADAS, and Industrial Internet-of-Things.

This user guide describes the UltraScale architecture DSP Slice resources and is part of the
UltraScale architecture documentation suite available at: www.xilinx.com/documentation.

UltraScale Architecture DSP Slice Overview
Programmable logic devices are efficient for digital signal processing (DSP) applications
because they can implement custom, fully parallel algorithms. DSP applications use many
binary multipliers and accumulators that are best implemented in dedicated DSP resources.
The UltraScale devices have many dedicated low-power DSP slices, combining high speed
with small size while retaining system design flexibility. The DSP resources enhance the
speed and efficiency of many applications beyond digital signal processing, such as wide
dynamic bus shifters, memory address generators, wide bus multiplexers, and
memory-mapped I/O registers. The DSP slice in the UltraScale architecture is defined using
the DSP48E2 primitive and the slice is referred to as either DSP or DSP48E2 in the Xilinx
tools. The basic functionality of the DSP48E2 slice is shown in Figure 1-1. For complete
details, refer to Chapter 2, DSP48E2 Functionality.

X-Ref Target - Figure 1-1

Figure 1‐1: Basic DSP48E2 Functionality

48-Bit Accumulator/Logic Unit

Pattern Detector

27 x 18
Multiplier

Pre-adder

B

A

D

C

P

XOR

Pattern
Detect=

+

–

X16750-082917

Send Feedback

Figure 3.2: Overview of a DSP48 slice from [11, p. 7]. The figure only shows the relevant parts of
a DSP48 slice for the application. Input C is not used in the application.

signal S_A : signed(AWIDTH - 1 downto 0);

signal S_B : signed(BWIDTH - 1 downto 0);

signal S_D : signed(DWIDTH - 1 downto 0);

signal S_ADD : signed(AWIDTH downto 0);

signal S_MULT : signed(AWIDTH + BWIDTH downto 0);

-- make sure a DSP slice is used instead of slice logic

attribute use_dsp of Behavioral : architecture is "yes";

Listing 3.3: Signal declaration of the conversion unit.

Thilo Wendt Institut ELSYS 28

3 Results

S_A <= signed(AIN);

S_B <= signed(BIN);

S_D <= signed(DIN);

if SUBADD = '1' then

S_ADD <= resize(S_A, AWIDTH + 1) - resize(S_D, AWIDTH + 1);

else

S_ADD <= resize(S_A, AWIDTH + 1) + resize(S_D, AWIDTH + 1);

end if;

S_MULT <= S_ADD * S_B;

Listing 3.4: Implementation of a DSP48 slice in VHDL. S A, S B and S D hold the content of the
input registers. S ADD holds the result off the addition and S MULT contains the final
result of the conversion. The corresponding timing can be found in timing diagram
3.3.

Clock

S A A(0) A(1) A(2) A(3)

S B B(0) B(1) B(3)

S D D(0) D(1) D(2) D(3)

S ADD A(0) + D(0) A(1) + D(1) A(2) + D(2)

S MULT (A(0) + D(0)) · B(0) (A(1) + D(1)) · B(1)

Timing diagram 3.3: Illustration of the signals in a DSP48 slice. Due to the pipeline structure,
multiple sets of values can be processed concurrently. After the initial latency
of three clock cycles, a value is output on every rising edge until all values
are processed.

Thilo Wendt Institut ELSYS 29

3 Results

3.1.3 ADC Controller

The component ADC CONTROLLER integrates the SPI master and the conversion unit. The raw value
delivered by the SPI master is piped through the conversion unit both results are presented at the
interface of the component. In order to satisfy NOF3, the ADC controller provides the generics
RES MSB and RES LSB. With these generics, a slice from the output vector of the multiplier can be
selected. The generics are available at the interface of the top level component, which is described
in appendix A.3. Furthermore, the output format of the ADC controller satisfies NOF7, since the
results are concatenated to a vector for the raw and another vector for the post-processed values.
Since the SPI master only serves as a media access control, the ADC controller needs to consider
the functional characteristics of the LTC2311. It features the property that the chip outputs the
result of the previously converted sample. This issue is illustrated by timing diagram 3.4. Usually,
the user expects the IP core to return the sampled analog value in the moment of the trigger
event. In fact, with the behavior of the LTC2311, the user obtains the value from the previous
trigger event which can be at anytime in the past. Therefore, a dummy sample must be taken
before reading out the value of interest. This has been considered in the implementation of the
ADC controller. Fig. 3.3 shows the functional description of the ADC controller which has been
designed as an FSM.
In the following, the FSM of the ADC controller is explained. The IDLE state (reset state) is similar
to IDLE in the SPI Master. A manual control of the signals SCLK and SS N is possible, if the
appropriate port on the components interface is set to ’1’. The signals are directly connected to the
SPI master. A conversion is initiated by setting the ENABLE port to ’1’, during which no manual
control of the SPI master is possible. Therefore, the signal S MANUAL is pulled to ’0’ during
the active operation of the ADC controller. As explained above, the first sample returned by the
ADC needs to be discarded. This behavior is induced by setting the signal S DUMMY SAMPLE
to ’1’ for the first sample which lets the FSM directly return into the OCCUPIED state after the
first sample. After this first dummy sample, the FSM transitions between the states OCCUPIED,

SPI TRANSFER and CONVERTING until the desired number of samples, which is determined by
the signal S SAMPLES, has been taken from the ADC. In case of the SPI master, the transition
from SPI TRANSFER to CONVERTING is triggered by the falling edge of the BUSY signal of the SPI
master which indicates the end of the conversion. For the conversion unit the number of clock
cycles required for the addition and multiplication is determined during synthesis as explained
in section 3.1.2. Therefore, the ADC controller can stay in the CONVERTING state for a predefined
number of clock cycles. This number is simply determined by adding the initial latency of three
clock cycles of the conversion unit to the number of ADCs (i.e. values to be processed) that are
connected to the IP core. The total latency of transfer and conversion is given in system clock
cycles by (3.5) where nlat,SPI is given by (3.4).

nlat,result = nlat,SPI + CHANNLES PER MASTER + 6 (3.5)

After the processing of all values, the FSM returns into the IDLE state, if the ENABLE signal is ’0’
after the last sample. Otherwise, a new series of samples is taken immediately without taking a
dummy sample. This behavior allows the operation in a continuous mode. The implementation
of the FSM follows the principle explained in section 2.1.3.
Besides the functional implementation of the FSM, the ADC controller also holds the offset and the
multiplication factor for the conversion of the raw value as well as the number of samples taken

Thilo Wendt Institut ELSYS 30

3 Results

per trigger. The VHDL process to update these values is independent from the implementation of
the FSM. Therefore, the parameters can be updated at any time also during an ongoing series of
samples. For the offset and the multiplication factor, the ADC controller offers a distinct memory
location for each ADC channel which satisfies NOF5.
The components SPI MASTER and RAW TO SI are integrated in the ADC controller as a standard
VHDL component instances. One single SPI master and conversion unit are instantiated per ADC
controller unit.

Analog value 1 V 3 V

SS N (Trigger)

Bus activity

Conversion result 1 V 1 V 3 V

Timing diagram 3.4: Conversion behavior of the LTC2311. The red arrows show the mapping
between the trigger events and the corresponding results delivered by the
LTC2311. The diagram shows the power up behavior. After the first transfer,
an unknown value is returned by the ADC because the output register of
the ADC contains a random power up value.

IDLE

SPI_TRANSFERCONVERTING

OCCUPIED

/S_SPI_ENABLE = '0'

/S_MANUAL <= MANUAL

[SAMPLES <= 0 && ENABLE = '0'] /BUSY = '0'

[SAMPLES <= 0 && ENABLE = '1']
/set SAMPLES

RAW_VALID = '0'
S_SPI_ENABLE = '1'

[S_DUMMY_SAMPLE = '1'
&& falling edge SPI_BUSY]
/S_DUMMY_SAMPLE <= '0'

[SAMPLES > 0]
/RAW_VALID = '0'
S_SPI_ENABLE = '1'

[S_DUMMY_SAMPLE = '0' &&
Falling Edge SPI_BUSY]
/CE_CONVERSION = '1'

CONV_DEL = MULT_CLK_CYCLES
RAW_VALID = '1'

SI_VALID = '0'

[CONV_DEL <= 0]
/SI_VALID = '1'

CE_CONVERSION = '0'
SAMPLES <= SAMPLES - 1

[ENABLE = '1']
/BUSY <= '1'

S_DUMMY_SAMPLE <= '1'
set SAMPLES

S_MANUAL = '0'

[conversion ongoing]
/CONV_DEL <= CONV_DEL - 1

Figure 3.3: FSM of the ADC controller

Thilo Wendt Institut ELSYS 31

3 Results

3.1.4 Advanced eXtensible Interface 4 Lite

The AXI4 Lite provides the connection between the software driver that may run on a processor of
the SoC and the hardware IP core. The IP core acts as an AXI slave. Within the scope of this report,
the implementation details of an AXI slave are not further discussed since the Xilinx provides
an AXI module as a starting point for custom IP core development. For further details about the
AXI see [12]. For the current project, the AXI implementation that is available when following
the ”Create and package IP” wizard has been adapted for the application. See [13, p. 40-42] for
details about the wizard. The tool outputs a top level module with the ports for the AXI as well
as the implementation of the AXI, which is instantiated in the top level module. The architecture
is illustrated by Fig. 2.11. Indeed, the tool offers various customization options for the newly
created AXI peripheral but the AXI implementation is still generic and needs to be adapted for
the application. In the following paragraphs, only the adaptions applied to the template provided
by Xilinx are presented.
The IP core requires ten 32 bit AXI registers. In order to utilize the whole address space, the
number of slave registers needs to match a power of two because the encoding of the address is
binary. Therefore, an AXI peripheral with 16 registers has been created. Unused registers may be
used for further enhancements of the IP core. Listing 3.5 displays the registers that are used for
the application. In contrast to the implementation given by Xilinx, meaningful names have been
given to the signals. All registers used by the application are connected to the corresponding port
on the entity of the AXI component. This way, the content of the registers is available in the top
level component.

signal ADC_CR :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_SPI_CR :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_SPI_CFGR :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_MASTER_CHANNEL :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_CHANNEL :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_MASTER_FINISH :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_MASTER_SI_FINISH :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_MASTER_BUSY :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_CONV_VALUE :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal ADC_AVAILABLE :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg10 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg11 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg12 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg13 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg14 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg15 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

Listing 3.5: Signal declaration of the AXI registers. C S AXI DATA WIDTH is a generic which deter-
mines the width of a single AXI register. It has a value of 32. The registers 10 to 15 are
not used by the application. The registers ADC MASTER FINISH, ADC MASTER SI FINISH

and ADC MASTER BUSY are read only.

Thilo Wendt Institut ELSYS 32

3 Results

Further adjustments have been done in the process that performs the write action from the
software to the AXI register. All read only register from listing 3.5 have been removed from this
process, because the software shall not be able to write to these memory locations. Moreover, an
acknowledgment mechanism has been added to the process. Specific actions e.g. the software
trigger are acknowledged by resetting the corresponding bit by hardware. For this purpose, ports
carrying the write request for the specific AXI register have been added to the entity of the AXI
component. The acknowledgment logic is displayed in listing 3.6.

if (P_ADC_CR_IN(C_TRIGGER) = '0') and ADC_CR(C_TRIGGER) = '1' then

ADC_CR(C_TRIGGER) <= '0';

end if;

if (P_ADC_CR_IN(C_CONV_VALUE_VALID) = '0') and ADC_CR(C_CONV_VALUE_VALID)

= '1' then↪→

ADC_CR(C_CONV_VALUE_VALID) <= '0';

end if;

Listing 3.6: Acknowledgment mechanism in the AXI component. Ports are prefixed with P and
constants with C . The constants determining the position of the bit in the register are
defined in a package globally for the IP core.

Lastly, a process has been added to the AXI implementation that fills in the information in the
read only registers. Ports on the entity are available that take the information given by the top
level component. Listing 3.7 shows the implementation of this feature.

process (S_AXI_ACLK) is

begin

if (rising_edge(S_AXI_ACLK)) then

if S_AXI_ARESETN = '0' then

ADC_MASTER_FINISH <= (others => '0');

ADC_MASTER_SI_FINISH <= (others => '0');

ADC_MASTER_BUSY <= (others => '0');

else

ADC_MASTER_FINISH <= P_ADC_MASTER_FINISH;

ADC_MASTER_SI_FINISH <= P_ADC_MASTER_SI_FINISH;

ADC_MASTER_BUSY <= P_ADC_MASTER_BUSY;

end if;

end if;

end process;

Listing 3.7: Operation of the read only AXI registers. Ports are prefixed with P in order to
distinguish them from signals.

Thilo Wendt Institut ELSYS 33

3 Results

3.1.5 Top Level Module

The top level module of the IP core integrates the ADC controller and the AXI4 Lite. Besides that,
the module implements the continuous and the triggered operation mode as well as a manual
mode in order to control sleep and nap modes of the LTC2311. Moreover, it controls the adjustment
of the offset and the multiplication factor as well as the number of samples taken per trigger
event. Similar to the ADC controller, the trigger modes and the manual mode are implemented
in an FSM, while the adjustment of the operation parameters is performed independently in a
separate process.
Fig. 3.4 shows the FSM implemented in the top level module. The transitions are mainly con-
trolled by the content of the AXI registers. Appendix A.1 contains a detailed description of
the AXI registers. The FSM considers only the control register (S ADC CR) and the SPI control
register (S ADC SPI CR). Furthermore, an ongoing conversion is taken into consideration by
reading the signal NOT BUSY. Fig. 3.5 displays the activity diagram that is executed on every
transition to the triggered state including self transitions. It shows that the IP core features a
hardware trigger for real time requirements and a software trigger via AXI4 Lite for uncritical
purposes. The trigger event is executed by pulling the ENABLE port of the ADC controller to
’1’. In continuous mode, the port is pulled to ’1’ as long as the FSM is in the state CONTINUOUS.
Finally, a manual mode can be enabled in order to use nap and sleep modes of the LTC2311. This
mode can only be enabled if no conversion is ongoing and if the IP core is in triggered mode. In
manual mode, the corresponding bits for SS N and SCLK from the ADC SPI CR register are simply
forwarded to the ADC controller component. The implementation of the different trigger modes
fulfills NOF6. Furthermore, NOF9.2 is satisfied by the implementation of the hardware trigger
as vector, where every bit triggers an ADC controller which represents a group of ADCs. This
functionality is also available for the software trigger mode, where the channels are selected by
the ADC MASTER CHANNEL register.

TRIGGERED

CONTINUOUSSPI_MANUAL

[S_ADC_CR(C_MODE) = '1']

[S_ADC_SPI_CR(C_SPI_CONTROL) = '0' &&
S_ADC_CR(C_MODE) = '0']

[S_ADC_SPI_CR(C_SPI_CONTROL) = '0' && S_ADC_CR(C_MODE) = '1']

[S_ADC_CR(C_MODE) = '1'][S_ADC_SPI_CR(C_SPI_CONTROL) = '1']

[S_ADC_CR(C_MODE) = '0']

[S_ADC_SPI_CR(C_SPI_CONTROL) = '0' &&
S_ADC_CR(C_MODE) = '0']

[NOT_BUSY && S_ADC_SPI_CR
(C_SPI_CONTROL) = '1']

Figure 3.4: FSM of the top level module.

Thilo Wendt Institut ELSYS 34

3 Results

Hardware Trigger?Trigger
selected ADCs

Software Trigger?

ADCs
available?

yes

noyes

no

yes

no

Figure 3.5: Activity diagram, that is executed on every transition to the TRIGGERD state including
self transitions. ADCs can be unavailable if they are put into sleep or nap mode, which
is indicated by resetting the corresponding bit in the ADC AVAILABLE register.

The initial total latency from the application of a trigger signal to the output of the first valid
result on the interface of the IP core is given by (3.6). For every additional sample, another latency
of nlat,result clock cycles is added to the initial delay.

nlat,total = nlat,result + nlat,SPI + 3 (3.6)

Besides the implementation of the operating modes, the top level module also controls the adjust-
ment of the offset, the multiplication factor and the number of samples taken per trigger event.
Listing 3.8 shows a part of the port mapping of the ADC controller component in the top level
module. The ADC controller features ports for setting the operation parameters and a port that
carries the value from the AXI register described in appendix A.1.9. The process presented in
listing 3.9 sets the control ports on the ADC controller based on the user request. The selection,
which channels shall be updated is performed via the ADC MASTER CHANNEL register as described
in appendix A.1.4. The encoding from Table A.2 as well es the update mechanism can be found
in the lines 307 to 327 of listing 3.9.

-- Control Ports

SET_CONVERSION => S_SET_CONVERSION(i),

SET_OFFSET => S_SET_OFFSET(i),

SET_SAMPLES => S_SET_SAMPLES(i),

SI_VALID => S_ADC_MASTER_SI_FINISH(i),

RAW_VALID => S_ADC_MASTER_FINISH(i),

BUSY => S_ADC_MASTER_BUSY(i),

-- Value Ports

VALUE => S_ADC_CONV_VALUE, -- input for conversion or offset value

Listing 3.8: Extraction from the port map of the instantiation of the ADC controller in the top
level module. The ports SET OFFSET SET CONVERSION SET SAMPLES control the
adjustment of the corresponding operation parameter while VALUE carries the value
from the AXI register.

Thilo Wendt Institut ELSYS 35

3 Results

300 proc_set_conversion: process(S_CLK)

301 begin

302 if rising_edge(S_CLK) then

303 if (S_RESET_N = '0') then

304 S_SET_CONVERSION <= (others => '0');

305 S_SET_OFFSET <= (others => '0');

306 S_ADC_CR_IN(C_CONV_VALUE_VALID) <= '1';

307 elsif (S_ADC_CR(C_CONV_VALUE_VALID) = '1') then

308 -- reset the update request

309 S_ADC_CR_IN(C_CONV_VALUE_VALID) <= '0';

310 -- update the values

311 S_SET_OFFSET <= (others => '0');

312 S_SET_CONVERSION <= (others => '0');

313 S_SET_SAMPLES <= (others => '0');

314 -- overwrite default if adjustment has been requested

315 case S_ADC_CR(C_CONFIG_VALUE_MSB downto C_CONFIG_VALUE_LSB) is

316 when "000" =>

317 S_SET_OFFSET <= S_ADC_MASTER_CHANNEL(SPI_MASTER - 1 downto 0);

318 when "001" =>

319 S_SET_CONVERSION <= S_ADC_MASTER_CHANNEL(SPI_MASTER - 1 downto 0);

320 when "010" =>

321 S_SET_SAMPLES <= S_ADC_MASTER_CHANNEL(SPI_MASTER - 1 downto 0);

322 when others =>

323 S_SET_OFFSET <= (others => '0');

324 S_SET_CONVERSION <= (others => '0');

325 S_SET_SAMPLES <= (others => '0');

326 end case;

327 else

328 S_ADC_CR_IN(C_CONV_VALUE_VALID) <= '1';

329 S_SET_CONVERSION <= (others => '0');

330 S_SET_OFFSET <= (others => '0');

331 S_SET_SAMPLES <= (others => '0');

332 end if;

333 end if;

334 end process proc_set_conversion;

Listing 3.9: Process to adjust the operation parameters of the IP core.

Thilo Wendt Institut ELSYS 36

3 Results

3.2 Verification

The following sections describe the verification workflow. Section 3.2.1 describes the approach
of a static test bench which has been used in the project, while the setup and the results of the
verification on hardware are presented in section 3.2.2.

3.2.1 Verification by Simulation

Since the synthesis and implementation of a VHDL description for the target platform requires
significant computational time and resources it is important to perform at least a functional
verification of the design by simulation. There exist several test bench approaches, where the
concept of a static test bench written in VHDL is the simplest [4]. This approach has been used
within the scope of this report. The test bench consists of VHDL description with an empty
entity and an instantiation of the design under test (DUT). Furthermore, a stimulus is created
with a sequential process. The output of the digital circuit can be inspected in a waveform
window. This is an interactive and manual verification method, since the executive engineer has
to examine the output of the circuit manually, which is suitable for simple designs. However,
for a throughout verification, a checker function should be implemented which performs the
verification automatically based on a high level description of the desired behavior. Within the
scope of this report, such a checker function has not been implemented because the behavior of
the design is difficult to describe in software and the level of complexity is still suitable for an
interactive verification.
Even though the approach of a static test bench is simple and straightforward to use, the simu-
lation of an AXI bus effortful since a functional model for an AXI master is required. The AXI
master operates the AXI slave that is implemented in the design. The solution offered by Xilinx is
called AXI verification IP (AXI VIP) which is framework for building object oriented test benches
in SystemVerilog [14]. Since this solution requires SystemVerilog programming skills, which are
not available at the executive engineer, it has not been used within the scope of this project.
Therefore, only components without an AXI have been verified by simulation.
In the following paragraphs the verification of the component ADC CONTROLLER is described.
This component incorporates all other components without an AXI. Therefore, it illustrates the
verification process for the whole design.
After the setup of the test bench with an instance of the DUT, a stimulus needs to be created.
Since the IP core interfaces the LTC2311, which is a physical component outside the SoC which
can not be included in the simulation, a functional model for it’s interface has been created. The
behavior of the serial interface is described in listing 3.10. The generation of the stimulus itself is
straightforward. The ports of the instantiated ADC controller are connected to test signals which
are driven by a VHDL process. After adjusting the operating parameters a trigger is initiated.
These actions are presented in listing 3.11.

Thilo Wendt Institut ELSYS 37

3 Results

Fig. 3.6 shows the simulation result of the test bench. Another advantage of the verification
by simulation is the availability of all signals in the design. In a synthesized design, it must
be decided in advance which signals shall be visible after the synthesis and implementation.
Moreover, when using state machines, the names of the states are visible in plaintext in the
simulation whereas the probe in the synthesized design only shows the encoding as a binary
number. With the presented approach, the functional verification of subcomponents can be done
effortless and time efficient.

spi_slave : process (S_SCLK, S_SS_OUT_N, S_MISO)

begin

if falling_edge(S_SS_OUT_N) then

S_MISO <= (others => S_TX_DATA(S_TX_BIT_COUNT)) after (DCNVSDOV + 2 *

PCB_DEL);↪→

end if;

-- generate new output value on falling edge

if falling_edge(S_SCLK) then

S_MISO <= (others => 'X') after (HSDO + 2 * PCB_DEL);

if (S_TX_BIT_COUNT > 0) then

S_TX_BIT_COUNT <= S_TX_BIT_COUNT - 1;

end if;

end if;

if S_MISO(0) = 'X' then

S_MISO <= (others => S_TX_DATA(S_TX_BIT_COUNT)) after (DSCKSDOV - HSDO);

end if;

-- reset bit counter for next transmission

if rising_edge(S_SS_OUT_N) then

S_TX_BIT_COUNT <= TEST_DATA_WIDTH;

end if;

end process spi_slave;

Listing 3.10: Functional model of the LTC2311. The model behaves exactly like the real component.
It obeys to the SCLK and SS N signal which is generated by the IP core. Delay times
have been modeled as well with after statements. See [6] for the specification of the
considered delay times. The signal S TX BIT COUNT is the index of the vector that
is transferred to the SPI master.

Thilo Wendt Institut ELSYS 38

3 Results

223 -- set offset and conversion for channel 1

224 S_CHANNEL_SELECT <= (1 => '1', others => '0');

225 S_OFF_CONV <= std_logic_vector(to_signed(OFFSET_1, S_OFF_CONV'length));

226 S_SET_OFFSET <= '1';

227 wait for CLOCK_PERIOD;

228 S_SET_OFFSET <= '0';

229

230 S_OFF_CONV <= std_logic_vector(to_signed(CONVERSION_1, S_OFF_CONV'length));

231 S_SET_CONVERSION <= '1';

232 wait for CLOCK_PERIOD;

233 S_SET_CONVERSION <= '0';

234

235 -- set number of samples

236 S_OFF_CONV <= std_logic_vector(to_signed(SAMPLES, S_OFF_CONV'length));

237 S_SET_SAMPLES <= '1';

238 wait for CLOCK_PERIOD;

239 S_SET_SAMPLES <= '0';

240

241 wait for CLOCK_PERIOD;

242 -- start transfer

243 S_ENABLE <= '1';

244 wait for CLOCK_PERIOD;

245 S_ENABLE <= '0';

246 wait for 4 * (CLOCK_PERIOD * (TEST_CLK_DIV + 2) * TEST_DATA_WIDTH

247 + CLOCK_PERIOD * (TEST_DELAY + 1));

Listing 3.11: Setup and trigger of the ADC controller in the test bench environment. In lines 224
to 241, the operation parameters are set, where OFFSET 1, CONVERSION 1 and
SAMPLES are constants that are set in the signal definition of the test bench. The
trigger event happens in the lines 243 to 245 and the transfer takes place in lines 246
and 247.

Thilo Wendt Institut ELSYS 39

3
R

esults

Figure 3.6: Simulation result of the test bench.

Marker Event

110 ns Start of transfer of the dummy sample
500 ns End of transfer of the dummy sample
880 ns First raw value is valid
930 ns First converted value valid
1360 ns Series of two samples finished

Thilo
W

endt
InstitutE

LS
Y

S
40

3 Results

3.2.2 Verification on Hardware

After the verification by simulation, the VHDL design can be synthesized and implemented for
the target platform. In the synthesis step, a netlist is being generated from the VHDL description.
In a traditional electrical engineering this step is comparable to the creation of a schematic. The
implementation step is comparable to a place and route procedure in PCB design. Indeed, both
of these steps are fully automated by the synthesis tool but they can be manipulated by using
synthesis attributes and various design constraints [3] [15].
The verification process on hardware can be split up in two sections. As a first step, the signals
inside the IP core must be exposed to a probe in order to be able to observe them during operation.
Then, a functional verification of the IP core can be performed. These steps are described in detail
within the following paragraphs.

Setup of the IP core for Debugging

The first step in hardware debugging is the setup of a block design in Vivado. When using
software running on a CPU a Zynq UltraScale+ MPSoC block is placed into the block design,
which represents the SoC device including processor cores. Alternatively, the JTAG-to-AXI master
core can be used to run transactions with TCL commands [16, p. 161]. Within the scope of
this report, the IP core has been driven from a control application running on the ARM Cortex
R5 processor. The AXI of the IP core is then connected to the appropriate interface on the
aforementioned components.
In order to connect the hardware interface of the IP core to the appropriate pins on the package
of the SoC, ports are created in the block design. In case of the ADC IP core the mapping of the
physical pin on the SoC package to the pin on the package of the LTC2311 must be determined.
The connection of the ports in the block design to the appropriate physical pin is controlled by
the physical constraint PACKAGE PIN. Besides the determination of the correct pin, the IOSTANDARD

constraint must be set as well to instruct the synthesis tool to connect the correct IO buffer to the
pin (e.g. an LVDS buffer for the MISO and SCLK lines). In case of differential inputs (e.g. the
MISO lines) the internal termination resistor can be used by setting the constraint DIFF TERM ADV.
For the observation of the internal signals the internal logic analyzer (ILA) is used. The ILA is
an IP core offered by Xilinx to which signals from a synthesized design can be connected. In
order to connect the signals to the ILA core, the ”Netlist Insertion Debug Probing Flow” is used
[16, p. 128]. The synthesis tool offers the MARK DEBUG synthesis attribute that must be assigned
to signals being connected to the ILA core. Additionally the KEEP attribute can be assigned as
well. This instructs the synthesis tool to keep the signal in the design as it has been declared
instead of absorbing it which facilitates the debugging in the probe window and may help to
find errors in the schematic generated by the synthesis tool. Listing 3.12 shows the assignment
of the attributes required for debugging to a signal. Ideally, this assignment is performed on all
signals that shall be connected to the ILA core before synthesis. Alternatively, the signals can
be marked for debugging after synthesis and before implementation as well, but this induces
significant manual workload.

Thilo Wendt Institut ELSYS 41

3 Results

attribute KEEP : string;

attribute MARK_DEBUG : string;

attribute KEEP of MY_SIGNAL : signal is "true";

attribute MARK_DEBUG of MY_SIGNAL : signal is "true";

Listing 3.12: Assignment of the attributes required for debugging to a signal.

The next step is the synthesis of a netlist from the VHDL description without performing the
implementation. After the synthesis, the ILA core is injected in the netlist. This is achieved by
opening the synthesized design and following the ”Set Up Debug” wizard. All signals, to which
the MARK DEBUG attribute has been assigned, appear in the dialog and can be connected to the ILA
core. When all aforementioned steps have been performed successfully, the implementation and
the generation of the bitstream, which is loaded on the device, can be started.
While this procedure is suitable for debugging purposes, it has some drawbacks concerning pro-
duction usage. The assignment of the KEEP and MARK DEBUG attributes may prevent the synthesis
tool to find the most efficient solution because it is forced to keep signals that me be obsolete
in a more efficient implementation. Therefore, ILA cores should be removed from the design in
production.

Functional verification on Hardware

After the IP core has been setup for debugging, measurements on test signals can be performed.
Fig. 3.7 shows the setup with which the measurements on the IP core have been performed. In
order to ensure reproducibility, the equipment as well as a technical verification of the setup is
presented in appendix B.1.

ADC

SoC

LVDS

Single ended

SCLK

MISO

SS N

Control signals

Figure 3.7: Block diagram of the measurement setup for the verification on hardware. The signals
received from the ADC are piped through the FPGA and can be observed at the
oscilloscope as well.

Within the scope of this project, the quality of the measurement result is not investigated. Infor-
mation about that can be found in [6] and [7]. In fact, the timing of the measurements is the scope
of the following investigations.

Thilo Wendt Institut ELSYS 42

3 Results

As a test signal, a 20 kHz triangle has been fed to the ADC. Timing diagram 3.5 reveals the results
of the measurement of the test signal. In order to asses the quality of the result, the output of
the ADC has been compared to the output of the oscilloscope. While the timing of the sampling
events in relation to the output of the result correlates with the investigations from section 3.1.3,
especially the second value given by the ADC features a significant difference to the result of
the oscilloscope. This may be induced by inaccuracies of the oscilloscope, however the results R3
and R4 are closer to the samples S3 and S4. The difference between these samples is mainly the
sample and hold time (SAHT) in which the sampling capacitor of the ADC is connected to the
analog signal. This period is given by the length of the high state of the SS N signal [6], which
is shown in Fig. 3.8 for R2. If this period is to short, the capacitor may not be charged accurately
and the conversion result of the ADC does not match the actual value of the analog signal. The
minimal SAHT also depends on the driving strength of the analog signal which can differ in
varying applications. Furthermore, input filtering of the analog signal may require higher SAHTs
as well.
Besides the inaccuracy of the second sample, the limitation of the maximal operating frequency
of the IP core is depicted by the measurement. In order to drive the LTC2311 with the maximum
SCLK frequency of about 100 MHz, a system clock frequency of 200 MHz must be applied to the
IP core as explained in section 3.1.1. The high time of the SS N signal for S2 is currently fixed to
three system clock cycles which results in a period of 3/200 MHz = 15 ns. After the data sheet of
the LTC2311, the minimal SAHT is 28.5 ns [6]. Therefore, the SAHT is out of specification for the
second sample when driving the IP core with 200 MHz. As a consequence, the SAHT should be
adjustable after a further revision of the IP core.

Figure 3.8: Length of the SS N high pulse S2. The signal is on digital channel 5. The difference
between the cursors X1 and X2 show the pulse width which is at 30 ns. This still meets
the requirements of the LTC2311, however it may be to short for the application.

Thilo Wendt Institut ELSYS 43

3
R

esults

5 V

Analog Signal

−5 V

Trigger

SS N

SCLK

MISO

RAW VALUE -2 0 -12383 -6244 180 6659

RAW VALID

SI VALUE -306 -1894599 -955332 27540 1018827

SI VALID

Results R1 = −1.8945 V R2 = −0.9553 V R3 = 0.0275 V R4 = 1.0188 V

S1 = −1.7588 V S2 = −0.7537 V S3 = 0.0503 V S4 = 1.0553 V

Timing diagram 3.5: Result of the measurement taken to investigate the timing accuracy of the IP core. The data from the diagram
has been derived from a measurement with an oscilloscope combined with the output of the ILA. The analog
slope, on which the measurement is performed, is represented by the red curve in the upper region of the
diagram. The samples S1..4 have been derived from the measurement of the oscilloscope whereas the results
R1..4 present the value output by the ADC. Timing scale: 2 µs per division.

Thilo
W

endt
InstitutE

LS
Y

S
44

4 Summary and Discussion

4.1 Method Discussion

In the following section the applied methods for design and verification are being discussed and
possible enhancements are being depicted. The design methodology for the VHDL code by using
FSMs has been proven to be a versatile and well structured approach. Besides the explicit support
by the synthesis tool, the method produces deterministic results and is simple to reproduce. Since
the design and implementation of an FSM in VHDL is a strictly standardized process, it would be
possible to enhance the method with code generation. In this case, the engineer would design a
graphical representation of the FSM and a program generates the VHDL description of the FSM.
Concerning the architecture of the IP core, the definition of interfaces and the encapsulation of
functionality as described in section 2.4 turned out to be a promising approach as well. VHDL
directly supports the implementation of hierarchical designs with the instantiation and generation
of subcomponents as performed in the ADC controller and the top level component. Nevertheless,
an abstract design and the clear allocation of requirements to components as described in the
sections 2.3 and 2.4 is a vital preparation step in advance to the definition of the interfaces and
the implementation of the components.
Enhancements can be applied to the verification procedure. Within the scope of this project,
only a functional verification after the implementation in VHDL has been performed in order to
avoid time consuming implementation runs and to take advantage of the simulation features as
described in section 3.2.1. For a throughout verification two more simulation runs are required:

1. Simulation of the netlist that is generated by the synthesis. It needs to be verified, that the
synthesis tool does not change the behavior of the initial VHDL description.

2. Simulation of the implemented design. The synthesis tool outputs a netlist that includes
propagation delays of combinational circuits as well. A static timing analysis can be applied
on the implementation which detects possible violations of timing requirements. Addition-
ally, functional errors that may be induced by the implementation run can be detected as
well.

With this procedure, the behavior of the design on hardware is simulated as realistic as possible. It
may even outperform the hardware debugging with an ILA core since it’s injection induces major
changes to the netlist and consequently to the implemented design. However, it is mandatory
to create a fully automated test bench in order to perform the above mentioned simulation
runs. An interactive verification as performed in section 3.2.1 is inefficient and error-prone [4].
A further enhancement is the application of an object oriented test bench. In contrast to a static
solution, an object oriented approach separates the creation of the stimulus and the automated
verification from the actual DUT. Therefore, major parts of the test bench can be reused, while a
static solution needs to be tailored for every new design. The functional description of the DUT is
usually given in a high level programming language like SystemVerilog or SystemC which offer
a more comfortable modeling support than VHDL [4].

Thilo Wendt Institut ELSYS 45

4 Summary and Discussion

4.2 Summary

Referring to the project goals from section 1.3 the success of the project is estimated in the fol-
lowing sentences: The solution for actual value acquisition proposed in the current report offers
the maximum achievable amount of flexibility concerning adaptions during runtime. Even more
flexibility is offered by the various design parameters described in appendix A.3. However, an-
other synthesis and implementation run is required after the adjustment of the design parameters.
Nevertheless, the combination of a well defined AXI and the customization options offered by
the design parameters leads to a flexible solution while maintaining a low resource footprint.
Especially the pipeline implementation of the post processing described in section 3.1.2 leads
to high throughput while the resource requirements concerning DSP slices are cut down by
the factor of eight in comparison to non pipelined implementation and for the current external
hardware. Furthermore, the FSM implementation of the majority of components enables a simple
access for future developments by other engineers, because the process is straightforward and
easy to reproduce. The strict hierarchic implementation also enables partial design reuse for
future projects. Small shortcomings as described in section 3.2.2 can be fixed effortless in a minor
revision. In conclusion, the technical outcome of the project is considered to be successful.
Considering the method discussion from section 4.1, the workflow presented in the report is not
eligible for future developments in the UltraZohm project. The workflow as it has been performed
in the current report has major drawbacks concerning the verification. This may be uncritical
in laboratory environments when keeping the dangers concerning moving parts and electrical
energy to a safe level. However, when porting the application to production in higher power
classes, a consistent verification of all hardware components is unavoidable. Indeed, the setup of
a throughout verification solution requires major human resources which can not be provided by
the UltraZohm community because the project is targeting the development of control algorithms
and not the verification of HDL components. Furthermore, the majority of UltraZohm users is not
familiar with VHDL. Therefore, the presented workflow of a manual HDL coding and verification
is considered to be ineligible for further developments in the UltraZohm project.

4.3 Outlook

The IP core presented in the present report forms a solid basis for a value acquisition system.
Nevertheless, further enhancement and developments in the signal chain are required. This
includes the possibility to adjust the sampling time of the ADC as depicted in section 3.2.2. With
this feature, the user can react to different driving capabilities of the signal applied to the ADC.
Furthermore, an operation at the maximum sampling frequency would be possible as well. The
current solution has limitations in this concern as described in section 3.2.2.
With an adjustable number of samples taken on a single trigger event, the IP core is ready to feed
other post processing in the signal chain. For example, the implementation of an oversampling
unit that performs linear regression on a set of samples as presented in [17] may be a useful
development for the project. In this case, another hardware interface that carries the number of
the sample in the current set should be considered as a further enhancement of the ADC IP core
itself.

Thilo Wendt Institut ELSYS 46

4 Summary and Discussion

Concerning the hardware verification, the usage of an object oriented test bench may be consid-
ered also for code generated components. In this case, the behavioral description of the generated
code is available in an environment, the average user of the UltraZohm is familiar with. Therefore,
no knowledge about hardware verification domain is required by the end user. It needs to be
investigated, if it is possible to feed this description to a test bench, which automatically monitors
the behavior of the implementation running on hardware against the high level description in
software. This step is of major importance when bringing the application to production, since it
needs to be verified that no behavioral changes have been induced during the various processing
steps of the high level description. Since the generation of the stimulus, the verification against
the high level description and the interface to the hardware component are decoupled in an object
oriented test bench, this may be promising approach for hardware verification in the UltraZohm
project [4].

Thilo Wendt Institut ELSYS 47

List of Figures

2.1 Basic FSM structure for the implementation in the IP core 3
2.2 FSM of the SPI master . 5
2.3 Hardware of the UltraZohm . 11
2.4 SysML representation of the Analog Adapter Board and the Carrier Board 12
2.5 SysML representation of the UltraZohm . 13
2.6 SysML representation of the UltraZohm . 14
2.7 Top level use case diagram of the ADC IP core . 15
2.8 Sub use cases of FUNC1 . 16
2.9 Sub use cases of FUNC3 . 16
2.10 Connection between the SoC and the ADCs . 18
2.11 Component diagram of the ADC IP core . 19

3.1 FSM of the SPI master . 25
3.2 Overview of a DSP48 slice . 28
3.3 FSM of the ADC controller . 31
3.4 FSM of the top level module. 34
3.5 Activity diagram of the transitions to TRIGGERED state 35
3.6 Simulation result of the test bench . 40
3.7 Block diagram of the measurement setup . 42
3.8 Length of the SS N high pulse . 43

Thilo Wendt Institut ELSYS 48

List of Timing Diagrams

3.1 Timing of the signals between the SoC and the ADC 22
3.2 Timing of a complete transfer . 23
3.3 Illustration of the signals in a DSP48 slice . 29
3.4 Conversion behavior of the LTC2311 . 31
3.5 Sampling of a slope with the ADC IP core . 44

Thilo Wendt Institut ELSYS 49

List of Tables

2.1 Input alphabet of the FSM of the SPI master . 6
2.2 Input grammar of the FSM of the SPI master . 6

3.1 Signal definitions for the scope of this project. 21
3.2 Relevant delay times of the SPI to the ADC adapter board 23

A.1 Description of ADC CR . 55
A.2 Description of ADC CR . 56
A.3 Description of ADC SPI CR . 57
A.4 Description of ADC SPI CFGR . 58
A.5 Description of ADC MASTER CHANNEL . 59
A.6 Description of ADC CHANNEL . 60
A.7 Description of ADC MASTER FINISH . 60
A.8 Description of ADC MASTER SI FINISH . 61
A.9 Description of ADC MASTER BUSY . 61
A.10 Description of ADC AVAILABLE . 62
A.11 IO Signals of the IP core . 63
A.12 Design parameters of the IP core . 64

Thilo Wendt Institut ELSYS 50

List of Listings

2.1 State declaration of an FSM in VHDL . 7
2.2 VHDL description of the transition function δ . 8
2.3 VHDL description of the state memory S . 9
2.4 VHDL description of the output function λ . 10

3.1 Entity declaration of the SPI master . 26
3.2 Signal declaration of the SPI master . 27
3.3 Signal declaration of the conversion unit . 28
3.4 Implementation of a DSP48 slice in VHDL . 29
3.5 Signal declaration of the AXI registers . 32
3.6 Acknowledgment mechanism in the AXI component 33
3.7 Operation of the read only AXI registers . 33
3.8 Port map of the ADC controller in top level module 35
3.9 Adjustment of the operation parameters . 36
3.10 Functional model of the LTC2311 . 38
3.11 Setup and trigger in test bench environment . 39
3.12 Assignment of the attributes required for debugging to a signal. 42

Thilo Wendt Institut ELSYS 51

Bibliography

[1] S. Wendel, A. Geiger, E. Liegmann, et al.,
“UltraZohm — A Powerful Real-Time Computation Platform for MPC and Multi-Level
Inverters,”
In 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power
Electronics (PRECEDE),
May 2019,
Pp. 1–6.
doi: 10.1109/PRECEDE.2019.8753306.

[2] J. Bäsig,
“Automaten und ihre Anwendung,”
Lecture Notes,
Nuremberg, 2017.

[3] Xilinx,
“Vivado Design Suite User Guide: Synthesis,”
2020,
P. 295.
[Online]. Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2019_2/ug901-vivado-synthesis.pdf (visited on 08/05/2021).

[4] J. Bäsig,
“Rechnergestützter Schaltungsentwurf,”
Lecture Notes,
Nuremberg, 2019.

[5] M. K. Patel. “Finite state machines — FPGA designs with VHDL documentation,”
FPGA designs with VHDL. (2017),
[Online]. Available: https://vhdlguide.readthedocs.io/en/latest/vhdl/fsm.html
(visited on 08/08/2021).

[6] A. Devices,
“Datasheet LTC2311,”
Jul. 2016.
[Online]. Available: https://www.analog.com/media/en/technical-documentation/
data-sheets/231116fa.pdf (visited on 04/19/2020).

[7] S. Lukas and E. Liegmann. “Analog Adapter Board V3 — Documentation,”
Documentation of the UltraZohm. (2020),
[Online]. Available: https://docs.ultrazohm.com/hardware/adapter_cards/analog/
LTC2311_16_v3.html (visited on 08/09/2021).

[8] P. Horowitz and W. Hill,
The Art of Electronics,
Third edition.
New York, NY: Cambridge University Press, 2015,
1192 pp.,
isbn: 978-0-521-80926-9.

Thilo Wendt Institut ELSYS 52

https://doi.org/10.1109/PRECEDE.2019.8753306
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf
https://vhdlguide.readthedocs.io/en/latest/vhdl/fsm.html
https://www.analog.com/media/en/technical-documentation/data-sheets/231116fa.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/231116fa.pdf
https://docs.ultrazohm.com/hardware/adapter_cards/analog/LTC2311_16_v3.html
https://docs.ultrazohm.com/hardware/adapter_cards/analog/LTC2311_16_v3.html

Bibliography

[9] Xilinx,
“UltraScale Architecture SelectIO Resources User Guide,”
2019,
P. 360.
[Online]. Available: https://www.xilinx.com/support/documentation/user_guides/
ug571-ultrascale-selectio.pdf (visited on 08/05/2021).

[10] Motorola,
“SPI block guide,”
Feb. 2004.
[Online]. Available: https://www.nxp.com/files-static/microcontrollers/doc/ref_
manual/S12SPIV4.pdf (visited on 04/21/2021).

[11] Xilinx,
“UltraScale Architecture DSP Slice User Guide,”
2020,
P. 76.
[Online]. Available: https://www.xilinx.com/support/documentation/user_guides/
ug579-ultrascale-dsp.pdf (visited on 08/26/2021).

[12] Xilinx,
“AXI Reference Guide,”
2017,
P. 175.
[Online]. Available: https://www.xilinx.com/support/documentation/ip_documentation/
axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf (visited on 08/28/2021).

[13] Xilinx,
“Vivado Design Suite User Guide: Creating and Packaging Custom IP,”
Xilinx,
2020,
P. 113.
[Online]. Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf (visited on 08/04/2021).

[14] Xilinx,
“AXI Verification IP Product Guide,”
2019,
P. 97.
[Online]. Available: https://www.xilinx.com/support/documentation/ip_documentation/
axi_vip/v1_1/pg267-axi-vip.pdf (visited on 08/30/2021).

[15] Xilinx,
“Vivado Design Suite User Guide: Implementation,”
2021,
P. 208.
[Online]. Available: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2021_1/ug904-vivado-implementation.pdf (visited on 08/31/2021).

Thilo Wendt Institut ELSYS 53

https://www.xilinx.com/support/documentation/user_guides/ug571-ultrascale-selectio.pdf
https://www.xilinx.com/support/documentation/user_guides/ug571-ultrascale-selectio.pdf
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug1118-vivado-creating-packaging-custom-ip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_vip/v1_1/pg267-axi-vip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_vip/v1_1/pg267-axi-vip.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug904-vivado-implementation.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2021_1/ug904-vivado-implementation.pdf

Bibliography

[16] Xilinx,
“Vivado Design Suite User Guide: Programming and Debugging,”
2021,
P. 432.
[Online]. Available: https://www.xilinx.com/support/documentation/sw_manuals_j/
xilinx2021_1/ug908-vivado-programming-debugging.pdf (visited on 08/31/2021).

[17] P. Landsmann,
“Sensorless Control of Synchronous Machines by Linear Approximation of Oversampled
Current,”
Dissertation, Technische Universität München, München, 2014.
[Online]. Available: https://nbn-resolving.org/urn/resolver.pl?urn:nbn:de:bvb:91-
diss-20141119-1220061-0-8.

Thilo Wendt Institut ELSYS 54

https://www.xilinx.com/support/documentation/sw_manuals_j/xilinx2021_1/ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/sw_manuals_j/xilinx2021_1/ug908-vivado-programming-debugging.pdf
https://nbn-resolving.org/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20141119-1220061-0-8
https://nbn-resolving.org/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20141119-1220061-0-8

A Description of the IP core

A.1 AXI Registers

A.1.1 ADC Control Register

Address offset: 0x0
Software control register of the IP core.

Table A.1: Description of the AXI register ADC CR.

Bit(s) Name Default Access True (’1’) False (’0’)

0 MODE 0 RW Continuous mode: The core is trig-
gered as frequent as possible

Triggered mode: The core must be
triggered by software or by hard-
ware where hardware trigger is
prioritized

1 TRIGGER 0 RW Start conversion of the channels
selected in synchronously. If a se-
lected channel is busy when the
bit is set a new conversion is only
started after the ongoing conver-
sion has terminated.

The bit is reset by hardware after
the conversion has been started
synchronously.

2 SW RESET 0 RW Trigger a reset of the IP core by
software. All registers and ports
are reset to their default values.

Reset finished. Reading from this
bit always returns 0.

3 CONV VALUE VALID 0 RW Indicates that the value in is valid.
After setting the bit the value will
be updated in the selected chan-
nels as soon as the selected chan-
nels are not busy anymore.

Reset by hardware after the value
in is read.

[4..6] CR CONFIG VALUE [0..2] 000 RW See Table A.2 See Table A.2

Thilo
W

endt
InstitutE

LS
Y

S
55

A
D

escription
ofthe

IP
core

Table A.2: Description of the AXI register ADC CR.

6 5 4 Access Description Encoding

0 0 0 RW The value in the ADC VALUE register is the offset Signed two’s complement
0 0 1 RW The value in the ADC VALUE register is the conver-

sion factor
Signed two’s complement

0 1 0 RW The value in the ADC VALUE register is the number
of samples per trigger

Unsigned integer

0 1 1 RW Reserved
1 0 0 RW Reserved
1 0 1 RW Reserved
1 1 0 RW Reserved
1 1 1 RW Reserved

Thilo
W

endt
InstitutE

LS
Y

S
56

A
D

escription
ofthe

IP
core

A.1.2 SPI Control Register

Address offset: 0x4
The SPI interfaces can be controlled manually with this register in order to use sleep and nap modes of the ADC. The signal
SS N and SCLK only can be controlled manually if the selected master channels are not busy. Check ADC MASTER BUSY as a
status indicator.
Furthermore, the clock polarity and the sample phase are set with this register. This setting applies globally to all SPI masters
instantiated.

Table A.3: Description of the AXI register ADC SPI CR.

Bit(s) Name Default Access True (’1’) False (’0’)

0 SPI SS N 0 RW Set the SS N signal to high Set the SS N signal to low
1 SPI SS N STATUS 0 RW The SS N signal is high The SS N signal is low
2 SPI SCLK 0 RW Set the SCLK signal to high Set the SCLK signal to low
3 SPI SCLK STATUS 0 RW The SCLK signal is high The SCLK signal is low
4 SPI CONTROL 0 RW Enable manual control of the

SPI. SPI SS N STATUS and
SPI SCLK STATUS are only
valid when SPI CONTROL is
true and the selected channels
are not busy.

Disable manual control of the SPI

5 SPI CONTROL STATUS 0 RW Manual control of the SPI inter-
face is possible.

Manual control of the SPI inter-
face is not possible.

6 SPI CPOL 1 RW IDLE state of the SCLK signal is
logic high

IDLE signal of the SCLK signal is
logic low

7 SPI CPHA 0 RW Sample on the second edge of
SCLK

Sample on the first edge of SCLK

Thilo
W

endt
InstitutE

LS
Y

S
57

A
D

escription
ofthe

IP
core

A.1.3 SPI Configuration Register

Address offset: 0x8
Setting for:

• DCNVSCKL (a.k.a PRE WAIT)

• DSCKLCNVH (a.k.a POST WAIT)

• Number of system clock cycles per half SCLK cycle - 1 (a.k.a CLK DIV)

See [6, p. 22] for illustration. The values given indicate the number of system clock cycles for the time described.

Table A.4: Description of the AXI register ADC SPI CFGR.

Bit(s) Name Default Access Description Encoding

0 - 15 CLK DIV 0 RW Number of system clock cycles per half
SCLK period - 1

Unsigned integer (binary)

16 - 23 PRE WAIT 0 RW Number of system clock cycles be-
tween the falling edge of SS N and first
SCLK edge - 1. a.k.a DCNVSCKL

Unsigned integer (binary)

24 - 31 POST WAIT 0 RW Number of system clock cycles be-
tween the last rising edge of SCLK
and the rising edge of SS N - 1. a.k.a
DSCKLCNVH

Unsigned integer (binary)

Thilo
W

endt
InstitutE

LS
Y

S
58

A
D

escription
ofthe

IP
core

A.1.4 Master Channel Selection

Address offset: 0xC
Encoding: One-Hot
This register is used for two different functions:

1. Update of the configuration values such as offset, conversion factor and number of samples per trigger. In order to specify
which individual ADC channels shall be updated, the SPI master as well as the ADC which is controlled by the selected
SPI master channel must be selected. The individual channel selection is done in ADC CHANNEL

2. Channel selection for software trigger: When setting the software trigger bit in the ADC CR all channels selected in
ADC MASTER CHANNEL are triggered by software. When using hardware trigger the content of this register is ignored.

Table A.5: Description of the AXI register ADC MASTER CHANNEL.

Bit(s) Name Default Access True (’1’) False (’0’)

0 - 31 ADC MASTER 0 - ADC MASTER 31 0 RW The master is selected for
the specified operation

The master is not selected
for the specified operation

Thilo
W

endt
InstitutE

LS
Y

S
59

A
D

escription
ofthe

IP
core

A.1.5 ADC Channel Selection

Address offset: 0x10
Encoding: One-Hot
When updating the offset and conversion factor select the channel on the SPI masters selected in ADC MASTER CHANNEL that
shall be updated.

Table A.6: Description of the AXI register ADC CHANNEL.

Bit(s) Name Default Access True (’1’) False (’0’)

0 - 31 ADC CH 0 - ADC CH 31 0 RW The individual ADC channel is
selected for the specified opera-
tion

The individual ADC channel is
selected for the specified opera-
tion

A.1.6 Transmission Ended Register

Address offset: 0x14
Encoding: One-Hot
This register indicates that an SPI master unit finished with the transmission of the raw value from the SPI master i.e. the value
on the hardware port RAW VALUE is valid for the indicated channels.

Table A.7: Description of the AXI register ADC MASTER FINISH.

Bit(s) Name Default Access True (’1’) False (’0’)

0 - 31 ADC MASTER 0 - ADC MASTER 31 0 R The transmission on the
specified master channel
finished

There is a transmission on-
going on the master chan-
nel

Thilo
W

endt
InstitutE

LS
Y

S
60

A
D

escription
ofthe

IP
core

A.1.7 Addition and Multiplication Ended Register

Address offset: 0x18
Encoding: One-Hot
This register indicates that an SPI master unit finished with the addition and the multiplication of the raw value i.e. the value on
the hardware port SI VALUE is valid for the indicated channels.

Table A.8: Description of the AXI register ADC MASTER SI FINISH.

Bit(s) Name Default Access True (’1’) False (’0’)

0 - 31 ADC MASTER 0 - ADC MASTER 31 0 R The processing the spec-
ified master channel fin-
ished

There is processing ongo-
ing on the master channel

A.1.8 Conversion Ongoing Register

Address offset: 0x1C
Encoding: One-Hot
The indicated master channels are currently busy i.e. a transmission or a multiplication is ongoing.

Table A.9: Description of the AXI register ADC MASTER BUSY.

Bit(s) Name Default Access True (’1’) False (’0’)

0 - 31 ADC MASTER 0 - ADC MASTER 31 0 R The specified master chan-
nel is busy

The specified master chan-
nel is not busy

Thilo
W

endt
InstitutE

LS
Y

S
61

A
D

escription
ofthe

IP
core

A.1.9 Configuration Value Register

Address offset: 0x20
The register takes the following values:

• The offset (Encoding: Signed two’s complement).

• The multiplication factor (Encoding: Signed two’s complement).

• The number of samples taken per trigger event (Encoding: Unsigned integer).

The distinction between these values is done by the setting of ADC CR register described in Table A.1 and A.2.

A.1.10 ADC Available Indicator

Address offset: 0x24
Encoding: One-Hot
The indicated master channels are currently not available because they are either in sleep mode or in nap mode. This register is
set by software and used by the hardware in order to prohibit a trigger when an ADC is not available.

Table A.10: Description of the AXI register ADC MASTER AVAILABLE.

Bit(s) Name Default Access True (’1’) False (’0’)

0 - 31 ADC MASTER 0 - ADC MASTER 31 0 RW The specified master chan-
nel is available

The specified master chan-
nel is not available

Thilo
W

endt
InstitutE

LS
Y

S
62

A
D

escription
ofthe

IP
core

A.2 IO Signals

Table A.11: IO Signals of the IP core

Port Name Direction Port Definition Reset State Description

RAW VALUE O std logic vector(DATA WIDTH
* CHANNELS PER MASTER *
SPI MASTER - 1 downto 0)

’0’ Raw value outputed by the ADC

SI VALUE O std logic vector((SPI MASTER
* CHANNELS PER MASTER *
(RES MSB - RES LSB + 1)) - 1 downto
0)

’0’ Converted Value = (RAW VALUE +
OFFSET) * CONVERSION

RAW VALID O std logic vector(SPI MASTER - 1
downto 0)

’0’ The value on port RAW VALUE is
valid. High active.

SI VALID O std logic vector(SPI MASTER - 1
downto 0)

’0’ The value on port SI VALUE is valid.
High active.

TRIGGER CNV I std logic vector(SPI MASTER - 1
downto 0)

– Hardware trigger input to trigger a
conversion.

SCLK O std logic vector(SPI MASTER - 1
downto 0)

’1’ SCLK signal for each individual SPI
master. Only available if DIFFEREN-
TIAL = true.

SCLK DIFF O std logic vector(2 * SPI MASTER - 1
downto 0)

logic 1 Differential SCLK signal for each in-
dividual SPI master. Only available if
DIFFERENTIAL = true.

SS N O std logic vector(SPI MASTER - 1
downto 0)

’0’ SS N signal for each individual SPI
master.

MISO I std logic vector(CHANNELS PER MASTER
* SPI MASTER - 1 downto 0)

– Data input for each individual ADC.
Only available if DIFFERENTIAL =
false.

MISO DIFF I std logic vector(2 * CHAN-
NELS PER MASTER * SPI MASTER -
1 downto 0)

– Differential data input for each indi-
vidual ADC. Only available if DIFFER-
ENTIAL = true.

Thilo
W

endt
InstitutE

LS
Y

S
63

A
D

escription
ofthe

IP
core

A.3 Design Parameters

Table A.12: Design parameters of the IP core

Parameter Name Allowable Values Default Type Description
DATA WIDTH 1 - 24 16 natural Data output width of the con-

nected SPI slave (i.e. ADC)
CHANNELS PER MASTER 1 - 32 4 natural Number of SPI slaves that are con-

trolled synchronously by one SPI
master

SPI MASTER 1 - 32 2 natural Number of independent SPI mas-
ters

OFFSET WIDTH 1 - DATA WIDTH 16 natural Bit width of the offset value which
is added to the raw value

CONVERSION WIDTH 1 - 18 18 natural Bit width of the conversion value
the sum of the offset and the raw
value is multiplied with

RES LSB 0 - DATA WIDTH + CONVER-
SION WIDTH - 1

6 natural LSB of the result vector of the
DSP48 block which is connected to
the IP core SI VALUE output

RES LSB 0 - DATA WIDTH + CONVER-
SION WIDTH - 1

23 natural MSB of the result vector of the
DSP48 block which is connected to
the IP core SI VALUE output

DIFFERENTIAL true false true boolean If true differential buffers are in-
stantiated for SCLK and MISO
ports. Otherwise standard CMOS
buffers are instantiated

Thilo
W

endt
InstitutE

LS
Y

S
64

B Environment

B.1 Measurement Setup

The measurements presented in section 3.2.2 are performed with the following equipment:

• Signal generator: Keysight InfiniiVision DSO-X 4034A Mixed Signal Oscilloscope

• Oscilloscope: Keysight InfiniiVision MSOX 4054A Mixed Signal Oscilloscope

• Single ended analog probe: Keysight N2894A 700 MHz. Fig. ?? shows the result of the probe
trimming.

• Single ended digital probe: Keysight N2756A

• DC voltage source: Rohde und Schwarz HM7042-5

B.2 Software Tools

In order to ensure reproducibility, a listing of the tools and versions used to design and implement
the system are presented in the following paragraphs:

VHDL Synthesis and Simulation For the synthesis and the simulation of VHDL descriptions
Xilinx Vivado Version 2020.1 has been used.

SysML Concerning the system modeling domain, Enterprise Architect 14 (EA) by Sparx Systems
has been used. Originally, the tool has been developed for software engineering with UML, but
with the rise of SysML, Sparx System also integrated this functionality in Enterprise Architect.
The tool has been chosen, because the developer already has experience with it and because it is
open for automated post-processing like code generation and automated model verification.

Thilo Wendt Institut ELSYS 65

	Abstract
	Nomenclature
	Introduction
	Motivation
	Structure of the Report
	Project Goals

	Theory
	Methodology
	Finite State Machines for Logic Design
	State Reduction of FSMs
	FSM Implementation in HDL

	Context Analysis
	Hardware System Context
	Software System Context

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Architecture

	Results
	Implementation
	SPI Master
	Conversion Unit
	ADC Controller
	Advanced eXtensible Interface 4 Lite
	Top Level Module

	Verification
	Verification by Simulation
	Verification on Hardware

	Summary and Discussion
	Method Discussion
	Summary
	Outlook

	Bibliography
	Appendices
	Description of the IP core
	AXI Registers
	ADC Control Register
	SPI Control Register
	SPI Configuration Register
	Master Channel Selection
	ADC Channel Selection
	Transmission Ended Register
	Addition and Multiplication Ended Register
	Conversion Ongoing Register
	Configuration Value Register
	ADC Available Indicator

	IO Signals
	Design Parameters

	Environment
	Measurement Setup
	Software Tools

