.. _Analog_LTC2311_16_v3: ====================== Analog LTC2311-16 3v01 ====================== .. image:: LTC2311_16_v3/LTC2311_16_v3_PCB.jpg Diagrams -------- **Block diagram** .. image:: LTC2311_16_v3/block_diagram.jpg **Schematic excerpt** .. image:: LTC2311_16_v3/schematic_colored_blocks.jpg **PCB colored** .. image:: LTC2311_16_v3/pcb_colored_blocks.jpg **From left to right** Notice that the picture of the PCB is flipped to match the orientation of the block diagram and schematic. ================ =========================================================================== Color Functionality ================ =========================================================================== light green Analog inputs on RJ45 dark green Input protection (ESD diodes) yellow Measurement shunt resistor (optional, not populated) pink Voltage follower to increase input impedance and avoid loading the sensor orange Differential OpAmp to scale and filter signals red Anti-aliasing filter and ADC dark blue Inverting buck-boost converter for -5V light blue Buck converter for +5V purple Buffer for CNV signal coming from the FPGA ================ =========================================================================== Filters ------- 1. The crossover frequency :math:`f_\mathrm{aliasing,-3dB}` of the anti-aliasing filter (red) is formed by the capacitors :math:`C_\mathrm{Diff}` and :math:`C_\mathrm{CM}`. They create a first order low-pass filter with the series resistors :math:`{R_0}` with .. math:: f_\mathrm{aliasing,-3dB}=\frac{1}{2 \pi R_0 (2 C_\mathrm{Diff} + C_\mathrm{CM} ) } = \frac{1}{2\pi\ 24.9\,\Omega \cdot (2\cdot16\,\mathrm{nF} + 12\,\mathrm{nF}) } = 145\, \mathrm{kHz} \,\,. 2. Additionally, :math:`C_\mathrm{f}` and :math:`R_\mathrm{f}` form an active first-order low-pass filter, with .. math:: f_\mathrm{DiffOp,-3dB} = \frac{1}{2\pi R_f C_f} \approx \, 3 \mathrm{MHz} .. image:: LTC2311_16_v3/op_amp_schematic.jpg :width: 800 The resulting transfer function of the signal conditioning stage, i.e., from the RJ45 input connectors to the :math:`V_\mathrm{ADC,in}` (including the buffer and filter stages up to the point where the signal enters the ADC), is measured with the Bode100. The resulting bode plot is depicted below. .. image:: LTC2311_16_v3/Bode_152kHzOutput_LT6203.jpg Measurement accuracy -------------------- The signal conditioning stage of the adapter card is validated with a 6 1/2 digit multimeter yielding the following results. This suggests that a measurement error below 2mV can be expected over the full input range. .. image:: LTC2311_16_v3/measurement_accuracy.png Adjust measurement gains ------------------------ For all types of measurements, described in :ref:`Analog_LTC2311_16_meas_modes`, it is recommended to adjust the gains of the differential operational amplifier (orange) to utilize the full input range of the ADC, i.e., :math:`{\pm 5}` V. Initially, the gain is set to .. math:: g=\frac{R_f}{R_g} = \frac{1\,\mathrm{k\Omega}}{1\,\mathrm{k\Omega}} = 1 \,\,. .. note :: **Use a high precision resistor to set the gains**, i.e., 0.1% or better. **The pre-assembled values are** ========================== ===================================== :math:`{R_f}` :math:`{1\,\mathrm{k\Omega}}` :math:`{R_g}` :math:`{1\,\mathrm{k\Omega}}` :math:`{C_f}` :math:`{56\,\mathrm{pF}}` :math:`{R_0}` :math:`{24.9\,\mathrm{\Omega}}` :math:`{C_\mathrm{CM}}` :math:`{12\,\mathrm{nF}}` :math:`{C_\mathrm{Diff}}` :math:`{16\,\mathrm{nF}}` ========================== ===================================== .. note :: You can also use the LTSpice simulation to find the correct gains and filter values for your setup. The simulation files are attached at the end of this document. Compatibility ------------- * Slots A1 to A3 can be used without limitations References ---------- * :download:`Schematic 3v03 ` * :download:`Assembly Drawing 3v03 ` * :download:`LTSpice simulation ` * See IP-Core :ref:`ipCore_LTC2311_v3` * `Data sheet ADC LTC2311-16 `_ Designed by """"""""""" Simon Lukas (TUM), Eyke Liegmann (TUM) in 09/2020